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Lecture 1

Introduction

We define a random variable X as a function that maps outcomes from a sample
space S to real numbers, formally denoted as X : S → R. This concept is essential
for quantifying uncertainty and making predictions based on probabilistic models.
Examples:

• Dice Roll: The experiment of throwing two dice has a sample space S with
cardinality 36. A random variable X, representing the sum of the dice, re-
duces the problem’s dimensionality to 11 possible outcomes (2 through 12). For
example, the probability of rolling a sum of 2 (both dice showing 1) is given by:

P[X = 2] = P[S = (1, 1)] =
1

36
(1)

• Poker Hands: In poker, the sample space S for all possible 5-card hands from
a 52-card deck is card(S) =

(
52
5

)
. If we are interested in the number of spades

in a hand, this random variable X can take 6 values (0 through 5).

Before delving into random variables, an useful function that is worth defining is the
indicator function. Formally, if A is a subset of R, we define the indicator function of
A as

1A =

{
1 if x ∈ A

0 otherwise
(2)

.

Classification of Random Variables

Random variables can be broadly divided in discrete and continuous.

Discrete Random Variables

What we have described above are discrete random variables.
To give a more formal definition, a discrete random variable has a countable (see

refresher 0.1) set of possible values. Its probability distribution is characterized by a
probability mass function (PMF) pX : R → R+, satisfying:

•
∑

x∈D pX(x) = 1 for some countable set D ⊂ R.

• pX(x) = 0 for all x /∈ D.
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• D = X(S) and pX(x) = P[X = x].

Discrete distributions that you should know:

1. Binomial: X ∼ Binomial(n, p) with n ≥ 1 and p ∈ [0, 1] defined as

pX(x) =

(
n

x

)
px(1− p)(n−x)1{N}(x) (3)

It describes is the success out of n independent trial each with probability of
success p.

2. Bernoulli: A special case of the Binomial is when n = 1, in which case we have
that X ∼ Bernoulli(p).

pX(x) = px(1− p)n−x1[0,1](x) (4)

3. Poisson: X ∼ Poisson(λ), with λ > 0 and D = {0, 1 . . . }, described as

pX(x) =
λxe−λ

x!
1{D}(x) (5)

It is the counting number of events in a unit of time, with λ being the average
number of events

4. Negative Binomial X ∼ Neg-binomial(r, p) with r ≥ 1, p ∈ [0, 1] and D =
{0, 1, . . . }, defined as

pX(x) =

(
x− 1

r − 1

)
pr(1− p)x−r1{D}(x) (6)

It describes the number of trials you must experience before gaining the r-th
success.

5. Geometric A particular case of the negative binomial is when r = 1, in which
case we have that X ∼ Geom(p), with D = {0, 1, . . . }:

pX(x) = p · (1− p)x−11{D}(x) (7)

And it describes the number of values before gaining the first success.
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Continuous Random Variables

A continuous random variable, X is characterized by a probability density function,
fX : R → R+ such that ∫ ∞

−∞
fX(x) dx = 1 (8)

Popular continuous distributions are:

1. Negative Exponential X ∼ Exponential(λ), which is defined as:

fX(x) = λe−λx1{R+}(x) (9)

This probability is used to find the time to the occurrence of an event, and is
generally used in survival analysis.

2. Gamma The negative exponential is a special case of the gamma distribution.
If X ∼ Gamma(a, b) then it’s defined as:

fX(x) =
ba

Γ(a)
xa−1e−bx1{R+}(x) (10)

3. Normal X ∼ N (µ, σ2), defined as:

fX(x) =
1√
2πσ

e−
1
2(

x−µ
σ )

2

1{R}(x) (11)

4. Uniform X ∼ Uniform(a, b) with D = [a, b], where −∞ < a < b < ∞

fX(x) =
1

b− a
1{[a,b]}(x) (12)

A characteristic of this distribution is that any interval of the same size has the
same probability.

Cumulative Distribution Functions

Cumulative distribution functions (CDFs) provide a comprehensive method for char-
acterizing the behavior of both discrete and continuous random variables.

For a given random variable X, its CDF, denoted as FX , is a function that maps
real numbers to the non-negative real numbers. Formally, it is defined as:

FX : R → R+, (13)
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where for any real number x, the value of FX(x) is given by the probability that X
assumes a value less than or equal to x:

FX(x) = P[X ≤ x].

Two random variables, X and Y , are considered to be equal in distribution, denoted
by X

d
= Y , if their CDFs are identical, i.e., FX = FY . This indicates that X and

Y share the same distribution across their respective domains. In the context of
discrete random variables, equality in distribution implies that their probability mass
functions (PMFs) are also equivalent:

pX = pY ⇒ X
d
= Y.

This means that for every possible value, the probability of X and Y assuming that
value is the same. For continuous random variables, equality in distribution is indi-
cated by the equivalence of their probability density functions (PDFs):

fX = fY ⇒ X
d
= Y.

Thus, the likelihood of X and Y assuming values within any given interval is identical.
The principle of identification leverages CDFs (as well as PMFs and PDFs for discrete
and continuous variables, respectively) to ascertain whether two random variables
have the same distribution. This principle is instrumental in the study of probability
and statistics, facilitating the comparison and analysis of random variables’ behaviors.

Introduction to Moment Generating Functions

The moment generating function (MGF) of a random variable X is defined as the
expected value of etX , where t is a real number. Formally, the MGF, mX(t), is given
by:

mX(t) = E[etX ] =
∫ sup(D)

inf(D)

etxfX(x) dx (14)

for continuous random variables, and

mX(t) = E[etX ] =
∑
x∈D

etxpX(x) (15)

for discrete random variables, where fX(x) is the probability density function
(PDF) of X, pX(x) is the probability mass function (PMF) of X and inf(D) and
sup(D) denote the lower and upper bounds of D.

8



The significance of the MGF lies in its ability to characterize the distribution of
a random variable. If the MGF of a random variable exists for t in some neighbor-
hood of 0, it uniquely determines the probability distribution of the random variable.
Moreover, moments of the random variable (such as mean, variance) can be derived
by taking derivatives of the MGF with respect to t and evaluating at t = 0:

µ′
n =

dnmX(t)

dtn

∣∣∣∣
t=0

(16)

where µ′
n denotes the nth moment about the origin of the random variable X.

Lecture 2

Moment Generating Functions

The moment generating function (MGF) of a random variable X is E[etX] = mX(t).
If such an expectation is finite neighbourhood of the origin, then the moment gener-
ating function can be written as

mX(t) = E[etX ] =


∑
x∈D

etxpX(x) for discrete random variables,∫ ∞

−∞
etxfX(x) dx for continuous random variables,

(17)

As you can see, for the continuous random variables, the MGF is an integral trans-
formation. An integral transformation is a mathematical process that converts one
function into another through the integration of the product of the original function
and a kernel function (Refresher 0.2) over a specified domain.

In our case:

• etx represents the kernel function, dependent on the parameter t,

• fX(x) is the original function,

• D is the domain on which we integrate.

This definition places the MGF in the category of integral transformations, as
it transforms the PDF of a random variable X into a new function mX(t) through
integration over D. You can rely on mX to evaluate moments of X, EXk. Here the
MGFs for the most common distributions, with their proofs:
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1. Binomial If X ∼ Binom(n, p), with D = N:

mX(t) = E[etX ]

=
n∑

x=0

etx
(
n

x

)
px(1− p)n−x

=
n∑

x=0

(
n

x

)
(pet)x(1− p)n−x

= (pet + 1− p)n

We are able to solve the summation because it is a binomial sum, which we

recall is given by
n∑

x=0

(
n

x

)
axbn−x = (a+ b)n, with a = (pet)x and b = (1− p)

2. Bernoulli, as the Bernoulli distribution is a binomial with n = 1, the MGF of
X ∼ Bernoulli(p) will be

mX(t) = (pet + 1− p)

3. Geometric If X ∼ Geom(p), with D = N\0, then

mX(t) = E[etX ]

=
∞∑
x=1

etxp(1− p)x−1

=
p

1− p

∞∑
x=1

(et(1− p))x

=
p

1− p

et(1− p)

1− et(1− p)

=
pet

1− et(1− p)

We are able to solve the summation because it is a geometric series,
∞∑
x=k

rx =
rk

1− r
(18)

with r = et(1 − p). As the geometric series requires |r| < 1 (refresher 0.3), we
have to set that |et(1−p)| < 1 which means that et < 1

1−p
, which further means

that t < −log(1 − p), which implies that log(1 − p) < 0. This further means
that the MGF exists ∀t < −log(1− p)
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4. Poisson If X ∼ Pois(λ), with D = N

mX(t) = E[etX ]

=
∞∑
x=0

etx
λxe−λ

x!

= e−λ

∞∑
x=0

(λet)x

x!

= e−λee
tλ

= eλ(e
t−1)

We were able to solve the summation because it is an exponential series with
b = (λet) and k = x

5. Negative Binomial X ∼ Neg-binomial(r, p) with r ≥ 1, p ∈ [0, 1] and D =
{0, 1, . . . }

mX(t) = E[etX ]

=
∞∑
x=0

etx
(
x+ r − 1

x

)
px(1− p)r

=

(
1− p

1− pet

)r

, for t < − ln(p)

6. Exponential If X ∼ Exp(λ) with D = R+

mX(t) = E[etX ]

=

∫ ∞

0

etxλe−λxdx

= λ

∫ ∞

0

e−(λ−t)xdx

= λ
1

λ− t
,∀t < λ

7. Uniform If X ∼ Unif(0, 1), then

mX(t) =

∫ 1

0

etxdx

=
1

t
(et − 1)
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Note: there’s no discontinuity at t = 0, as taking the limit of the first order
taylor expansion (refresher 0.3) tells us that

lim
t→0

et − 1

t
= 1 (19)

8. Normal If X ∼ N (0, 1)

mX(t) = E[etX ]

=

∫ ∞

−∞
etx

1√
2π

e−
x2

2 dx

=
1√
2π

∫ ∞

−∞
e−

x2

2
+txdx

=
1√
2π

∫ ∞

−∞
e−

1
2
(x2−2tx+t2−t2)dx

=
e

t2

2

√
2π

∫ ∞

−∞
e−

1
2
(x−t)2dx

=
e

t2

2

√
2π

√
2π

= e
t2

2

For Z ∼ N (µ, σ2), we have that Z = σX + µ

mZ(t) = E[etσX+tµ]

= etµE[etσX ]
= etµmX(tσ)

= etµe
(tσ)2

2

9. Gamma If X ∼ Gamma(a, b),

mX(t) = E[etX ]

=

∫ ∞

0

etx
ba

Γ(a)
xa−1e−bx dx

=
ba

Γ(a)

∫ ∞

0

etxxa−1e−bx dx

=
ba

Γ(a)

Γ(a)

(b− t)a

= (
b

b− t
)a
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We can solve the integral because, given the property of any PDF fX ,∫∞
−∞ fX(x)dx = 1, in this case, given our PDF, taking out ba

Γ(a)
, it follows that∫∞

0
xa−1e−bx dx must be equal to the inverse of ba

Γ(a)
, which is Γ(a)

ba

Continuity theorem

The Continuity Theorem is a key result in probability theory that gives conditions
under which a sequence of probability distributions converges to a limiting distribu-
tion. One common version of the theorem pertains to characteristic functions, as
follows:

Let {ϕn(t)} be a sequence of characteristic functions corresponding to a sequence
of probability distributions {Fn}. Suppose there exists a function ϕ(t) such that for
every t ∈ R,

lim
n→∞

ϕn(t) = ϕ(t), (20)

and ϕ(t) is continuous at t = 0. Then, ϕ(t) is the characteristic function of some
probability distribution F , and the sequence of distributions {Fn} converges weakly
to F .

The theorem implies that if we can show the pointwise convergence of characteris-
tic functions of a sequence of random variables to a limit, and this limit is continuous
at the origin, then the sequence of random variables converges in distribution to a
random variable with the characteristic function being the limit.

Lecture 3

More on MGFs

Properties of Moment Generating Functions:

• We can find the moment generating function of a linear transformation. Let
Y = a+bX, if mX is defined, then we can define mY (t) = Eet(a+bX) = eatEebX =
eatmX(bt). We have thus found mY (assuming that mX is defined on bt)

• It is possible to recover a moment, EXk from mX , by evaluating its k-th deriva-
tive at t = 0:

EXk =
dk

dtk
mX(t)

∣∣∣∣
t=0

(21)
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A relevant moment generating function is Y = X2, where X ∼ N (0, 1). In this
case we say that Y = χ2

(1), where χ2
(1) is a chi-squared distribution with 1 degree of

freedom. The chi-squared distribution with k degrees of freedom is a special case of
the gamma distribution where the shape parameter α is k/2 and the scale parameter
β is 2. Thus, its probability density function can be written as:

f(x; k) =
1

2k/2Γ(k/2)
x(k/2)−1e−x/2 for x > 0. (22)

Here, k represents the degrees of freedom, which in this context, relates to the
number of independent variables squared and summed to form the chi-squared statis-
tic (refreshers 0.4). The chi-squared distribution is particularly useful in statistical
tests that compare observed and expected frequencies to determine goodness-of-fit,
test for independence, and estimate variances.

Introduction to Random Vectors

A random vector is a vector of random variables that represent multi-dimensional
random phenomena, and which are defined on the same S.

More rigorously:
Let S be a sample space. Consider p real-valued random variables X1, X2, . . . , Xp,

each defined on S and mapping into R. Together, these random variables can be
viewed as a vector-valued random variable (X1, X2, . . . , Xp) that maps from S into
Rp, formally written as:

(X1, X2, . . . , Xp) : S → Rp. (23)

This vector-valued random variable associates each outcome in S with a p-dimensional
vector in Rp, where each component of the vector is the value of one of the p random
variables at that outcome.

For a 2D random vector (X, Y ), the components X and Y are individual random
variables.

The CDF for a 2D random vector (X, Y ), denoted FX,Y (x, y), is defined as:

FX,Y (x, y) = P (X ≤ x, Y ≤ y) (24)

Random vectors hold the same properties of random variables

1. Limits at Infinity: FX,Y (x, y) approaches the marginal CDFs FX(x) and FY (y)
as X and Y approach +∞, respectively, and 1 if X → +∞ and Y → +∞.

2. Limits at Negative Infinity: FX,Y (x, y) approaches 0 as x or y approaches −∞.

3. Continuity: FX,Y (x, y) is right-continuous, with FX,Y (x+h, y+k) → FX,Y (x, y)
as h, k → 0.

14



FX,Y (x2, y2)

FX,Y (x1, y1)

(x1, y1)

(x2, y2)

X

Y

Figure 1: Visualization of Point 4, the shaded area in blue is FX,Y at point (x1, y1)
and the area in red s FX,Y at point (x2, y2), which as you can see, is smaller

4. Ordering: If x1 ≤ x2 and y1 ≤ y2, then FX,Y (x1, y1) ≤ FX,Y (x2, y2).

Note: we can also find the area that sits in the rectangle with vertices

(x1, y1), (x1, y2), (x2, y2), (x2, y1) with the following formula:

FX,Y (x2, y2)− FX,Y (x2, y1)− FX,Y (x1, y2) + FX,Y (x1, y1)

Lecture 4

Random vectors can be classified as discrete or continuous.
Note: To streamline notation, we will restrict ourselves to 2d (see refresher 0.5 for

the n dimensional)

Discrete random vectors

A discrete random vector is described by a PMF pX,Y where pX,Y (x, y) = P[X =
x, Y = y]. From this, we can derive:

• The marginal probabilities:

pX(x) =
∑
y

pX,Y (x,y) (25)

pY (y) =
∑
x

pX,Y (x, y) (26)
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Note: the joint distribution is the multiplication of the two marginals if and only
if X and Y are independent. For this reason, in general, from the marginals we
usually can’t go back to the joint

• The conditional probabilities:

pX|Y (x | y) = pX,Y (x, y)

pY (y)
if pY (y) > 0 (27)

pY |X(y | x) = pX,Y (x, y)

pX(x)
if pX(x) > 0 (28)

• Moments of a function: given a function g : R2 → R, we can find the
expected value and that is

Eg(x, y) =
∑
x,y

g(x, y)pX,Y (x, y) (29)

From the conditional probabilities we can find the expected value of X given Y and
Y given X, and the definitions are:

E[X | Y = y] =
∑
x

xpX|Y (x, y) (30)

E[Y | X = x] =
∑
y

ypY |X(x, y) (31)

The expected value of Y given X, denoted as E[Y | X], represents the optimal
predictor of Y as a function of X. This optimality is defined in terms of minimizing
the mean squared error (MSE) between the actual values of Y and the predictions
from any function g(X). Mathematically, the criterion for optimality is expressed
as minimizing E [(Y − g(X))2 | X], where g(X) is the function that achieves this
minimum.

Note: E[Y | X] is the regressor function

Continuous random vectors

A continuous random vector is described by a PDF fX,Y : R2 → R with the following
properties

• fX,Y (x, y) ≥ 0,∀x, y

•
∫∫ ∞

−∞
fX,Y (x, y) dy dx = 1
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•
∫ b

a

∫ d

c

fX,Y (x, y) dy dx = P[a < X ≤ b, c < Y ≤ d]

• fX,Y (x, y) = P[X ∈ [x + dx], Y ∈ [y + dy]], from the mean value theorem
(refresher 0.6)

From this function we can derive

• The CMF which is given by

FX,Y (x, y) =

∫ x

−∞

∫ y

−∞
fX,Y (s, t) dt ds (32)

At the same time, we can go back from the CMF to the PDF by taking the
second partial derivative, which means that

fX,Y (x, y) =
∂2

∂x∂y
FX,Y (x, y) (33)

• The conditional probability is given by

fX|Y (x | y) = fX,Y (x, y)

fY (y)
if fY (y) > 0 (34)

fY |X(x | y) = fX,Y (x, y)

fX(x)
if fX(x) > 0 (35)

• The moments of a function: given a function g : R2 → R, we can find the
expected value and that is

Eg(x, y) =
∫ ∞

−∞

∫ ∞

−∞
g(x, y)fX,Y (x, y) dy dx (36)

From the conditional probabilities we can find the expected value of X given Y and
Y given X, and the definitions are:

E[X | Y = y] =

∫ ∞

−∞
xfX|Y (x, y)dx (37)

E[Y | X = x] =

∫ ∞

−∞
yfY |X(x, y)dy (38)
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Lecture 5

Joint and Marginal Distributions: Although we can recover from the joint the
marginals, the same can’t be said for the other way around, unless X and Y are
independent. However, if fX and fY |X are known, then

fX,Y (x, y) = fY |X(y | x)fX(x). (39)

Covariance and Correlation

Covariance in a Joint Distribution: Covariance in a joint distribution is given
by:

Cov(X, Y ) = E(X − EX)(Y − EY ) = EXY − (EX)(EY ). (40)

With Cov(X, Y ) > 0 then an increase in X will lead to an increase in Y , and with
Cov(X, Y ) < 0 an increase in X will lead to a decrease Y .

Properties of Covariance:

1. Cov(aX, bY ) = abCov(X, Y )

2. Cov(X, Y ) ≤
√

Var(X)
√

Var(Y )

3. Var(aX, bY ) = a2Var(X) + b2Var(Y ) + 2abCov(X, Y )

From 2 we also get that

ρX,Y =
Cov(X, Y )√

Var(X)
√

Var(Y )
(41)

With −1 ≤ ρX,Y ≤ 1. The two extreme cases happen if and only if P[Y = a+bX] = 1
for some b > 0 for ρX,Y = 1 and b < 0 for ρX,Y = −1.

If ρX,Y = 0, then we can only say they are uncorrelated, but this doesn’t mean
they are independent. The only case in which this happens is if X and Y are normally
distributed.

ρaX,bY =
abCov(X, Y )√

a2Var(X)
√

b2Var(Y )
=

abCov(X, Y )

|a| · |b|
√

Var(X)
√

Var(Y )
= sign(ab)ρX,Y .

(42)
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Properties Related to Conditioning

Expectation:
EX = EE(X | Y ). (43)

Proof:
Assuming X and Y linear,

EE(X | Y ) =

∫ ∞

−∞
E(X | Y = y)fY (y) dy =

∫ ∞

−∞

∫ ∞

−∞
xfX|Y (x | y) dx fY (y) dy (44)

=

∫ ∞

−∞

∫ ∞

−∞
xfX|Y (x | y)fY (y) dy dx =

∫ ∞

−∞
x

(∫ ∞

−∞
fX,Y (x, y) dy

)
dx (45)

=

∫ ∞

−∞
xfX(x) dx = EX. (46)

We are able to switch the order in which we integrate by using Fubini’s Theorem

that states
∫
X

∫
Y

g(x, y) dy dx =

∫
Y

∫
X

g(x, y) dx dy if g(x, y) ≥ 0 ∀x, y.
Variance of X: The variance of X is given by:

Var(X) = E[Var(X | Y )] + Var(E[X | Y ]). (47)

Starting with the definition of variance, we have:

Var(X) = E[(X − E[X])2]. (48)

Using the law of iterated expectations, we expand this as:

Var(X) = E[(X − E[X | Y ] + E[X | Y ]− E[X])2] (49)
= E[(X − E[X | Y ])2] + 2E[(X − E[X | Y ])(E[X | Y ]− E[X])] + E[(E[X | Y ]− E[X])2].

(50)

The second term becomes zero, and we are left with:

Var(X) = E[Var(X | Y )] + Var(E[X | Y ]). (51)
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Lecture 6

Independence

Definition and Properties

Independence of Random Variables: Random variables X and Y are said to be
independent, denoted as X ⊥ Y , if for any A,B ⊂ R,

P[X ∈ A, Y ∈ B] = P[X ∈ A]P[Y ∈ B]. (52)

This implies that the occurrence of events in X does not affect the probability of
events in Y and vice versa.

Characteristic Forms of Independence:

• For continuous random variables:

fX,Y (x, y) = fX(x)fY (y) ∀x, y ∈ R. (53)

• For discrete random variables:

pX,Y (x, y) = pX(x)pY (y) ∀x, y ∈ R. (54)

• In general, X and Y are independent if and only if their joint distribution
function factors into the product of their marginal distribution functions:

FX,Y (x, y) = FX(x)FY (y) ∀x, y ∈ R. (55)

Independence in transformations of Random Variables

Note:This section is highly technical and I think not necessary to know to this depth
Given two independent random variables X and Y with values in R, and functions

g, h : R → R, we define S = g(X) and T = h(Y ). We aim to prove that S and T are
independent, which, by definition, means showing that for any Borel sets C and D in
R,

P (S ∈ C, T ∈ D) = P (S ∈ C)P (T ∈ D). (56)

Two random variables X and Y are independent if and only if for any Borel sets
(see refresher 0.7) A and B,

P (X ∈ A, Y ∈ B) = P (X ∈ A)P (Y ∈ B). (57)
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Given S = g(X) and T = h(Y ), we express the events S ∈ C and T ∈ D in terms of
X and Y :

S ∈ C ⇔ X ∈ g−1(C),

T ∈ D ⇔ Y ∈ h−1(D),

where g−1(C) and h−1(D) are the pre-images (see refresher 0.8) of C and D under g
and h, respectively, which are also Borel sets due to the measurability of g and h.

Since X and Y are independent,

P (X ∈ g−1(C), Y ∈ h−1(D)) = P (X ∈ g−1(C))P (Y ∈ h−1(D)). (58)

Substituting the equivalences into the probability expression, we get

P (S ∈ C, T ∈ D) = P (X ∈ g−1(C), Y ∈ h−1(D)) = P (S ∈ C)P (T ∈ D). (59)

Special Cases A random variable X degenerate at a point c ∈ R (i.e., P[X = c] =
1) is independent of any other random variable.

Applications in Statistics

• Independently and Identically Distributed (i.i.d.) Variables: Assuming
X1, · · · , Xn ∼ P implies that they are independent and identically distributed.
For such variables:

– In the discrete case:

pX1,··· ,Xn(x1, · · · , xn) =
n∏

i=1

p(xi). (60)

– In the continuous case:

fX1,··· ,Xn(x1, · · · , xn) =
n∏

i=1

f(xi). (61)

• Variance of a Linear Combination: If X1, · · · , Xn are independent with
constants a1, · · · , an ∈ R, then:

Var

(
n∑

i=1

aiXi

)
=

n∑
i=1

a2iVar(Xi). (62)
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The second point is necessary for the Central Limit Theorem (CLT). The CLT states
that as the number of i.i.d. random variables increases, the distribution of their sum
(or average) tends towards a normal distribution, irrespective of the variables’ original
distribution.

Consider X1, X2, . . . , Xn as a sequence of i.i.d. random variables with a common
mean µ and variance σ2. The sample mean, denoted X̄n, is given by:

X̄n =
1

n

n∑
i=1

Xi. (63)

To understand the distribution of X̄n, we examine its variance. Setting a1 = · · · =
an = 1

n
, we apply the formula for the variance of a linear combination of independent

random variables:

Var(X̄n) = Var

(
1

n

n∑
i=1

Xi

)
=

n∑
i=1

1

n2
Var(Xi) =

1

n2
nσ2 =

σ2

n
. (64)

Moment Generating Functions and Independence

If X ⊥ Y with moment generating functions mX(t) and mY (t) respectively, then for
X + Y , the moment generating function is:

mX+Y (t) = mX(t)mY (t). (65)

For i.i.d. variables X1, . . . , Xn, the MGF of their sum is the product of their individual
MGFs, which simplifies to (mX(t))

n.

Multivariate Normal Distribution

Consider a random vector X = (X1, X2)
⊤ that follows a multivariate (bi-variate in

the 2-dimensional case) normal distribution. The joint density function of X, given

mean vector µ = (µ1, µ2)
⊤ and covariance matrix Σ =

(
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)
, is defined

as:

fX(x1, x2) =
1

2πσ1σ2

√
1− ρ2

exp

{
− 1

2(1− ρ2)

[
(x1 − µ1)

2

σ2
1

− 2ρ(x1 − µ1)(x2 − µ2)

σ1σ2

+
(x2 − µ2)

2

σ2
2

]}
(66)

where ρ is the correlation coefficient between X1 and X2, and σ1, σ2 are the standard
deviations of X1 and X2, respectively.

Properties:
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1. Linear Transformations: A linear transformation of X, say Y = aX1 + bX2,
where a and b are constants, will also follow a normal distribution. The mean
and variance of Y are given by E[Y ] = aµX1 + bµX2 and Var(Y ) = a2σ2

X1
+

b2σ2
X2

+ 2abρσX1σX2 , respectively.

2. Marginal Distributions: The marginal distribution of X1, obtained by inte-
grating the joint density over X2, is:

fX1(x1) =
1√

2πσX1

exp

(
−(x1 − µX1)

2

2σ2
X1

)
. (67)

Similarly, the marginal distribution of X2 is:

fX2(x2) =
1√

2πσX2

exp

(
−(x2 − µX2)

2

2σ2
X2

)
. (68)

The expected values are E[X1] = µX1 and E[X2] = µX2 , respectively.

3. Conditional Distributions: The conditional distribution of X1 given X2 = x2

is normally distributed with:

E[X1 | X2 = x2] = µX1 + ρ
σX1

σX2

(x2 − µX2), (69)

and variance Var(X1 | X2) = σ2
X1
(1 − ρ2). The formula demonstrates how

knowledge of X2’s value adjusts the expected value of X1.

4. Independence and Covariance: For X1 and X2 to be independent, the
covariance (and thus the correlation ρ) must be zero. In this case, the joint
density function simplifies, indicating that knowledge of one variable does not
affect the distribution of the other. Independence implies that the joint density
function factors into the product of the marginal densities.

Lecture 7

Multinomial Distribution

The multinomial distribution generalizes the binomial distribution to scenarios with
more than two possible outcomes. Specifically, while the binomial distribution con-
cerns binary outcomes (success or failure), the multinomial distribution applies to
experiments with k possible outcomes, where k ≥ 2.
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For an experiment with n trials, let Xi denote the number of occurrences of the
i-th outcome, for i = 1, 2, . . . , k. The total number of occurrences across all outcomes

is
k∑

i=1

Xi = n, implying Xi = n−
∑
j ̸=i

Xj for each i.

The probability of observing a specific outcome pattern is defined by a probability
vector p = (p1, p2, . . . , pk), where pi represents the probability of the i-th outcome,

subject to the conditions pi ≥ 0 for all i, and
k∑

i=1

pi = 1.

A random vector X ∼ Mk(n; p1, . . . , pk), with X = (X1, . . . , Xk), is said to follow
a multinomial distribution if its probability mass function (PMF) is given by:

pX1,··· ,Xk
(x1, . . . , xk) =

n!

x1!x2! · · ·xk!
px1
1 px2

2 · · · pxk
k (70)

The marginal distributions of each Xi are binomial, with Xi ∼ Binom(n; pi). This
implies that the expected value of Xi is E[Xi] = npi, and the covariance between any
two different components Xi and Xj (for i ̸= j) is Cov(Xi, Xj) = −npipj.

Transformations of Random Variables and Random Vectors

We detail three primary methods for determining the distribution of Y = g(X), where
X is a random variable, and g is a transformation function.

Method 1: Moment Generating Function (MGF) Method

The MGF of a random variable Y , when Y = g(X), is given by:

mY (t) = E[etY ] = E[etg(X)] =


∑
x

etg(x)pX(x) if X is discrete∫ ∞

−∞
etg(x)fX(x) dx if X is continuous

(71)

Method 2: Cumulative Distribution Function (CDF) Method

The CDF method relates directly to the transformation of probabilities:

FY (y) = P[Y ≤ y] = P[g−1(X) ≤ y] (72)

For continuous X with a continuous and strictly increasing CDF FX , the transforma-
tion Y = FX(x) yields Y ∼ Unif(0, 1). The proof is based on calculating P (Y ≤ y)
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and demonstrating it equals y for y ∈ (0, 1), which matches the CDF of a uniform
distribution.

Remark: This result extends beyond strictly increasing FX . When FX is not
strictly increasing, one uses the generalized inverse F−1

X (y) = inf{x ∈ R : FX(x) ≥ y}
(more on refresher 0.10).

Method 3: Change of Variable Technique

Univariate Case: For X ∼ fX and a differentiable, bijective function g, with
Y = g(X), the density of Y is:

fY (y) = fX(g
−1(y))

∣∣∣∣ ddyg−1(y)

∣∣∣∣ (73)

Multivariate Case: The extension to multivariate transformations involves the
Jacobian determinant of the transformation. For a random vector X ∼ fX and
a transformation g : Rn → Rn that is differentiable and bijective, the density of
Y = g(X) is given by:

fY (y) = fX(g
−1(y)) |det Jg−1(y)| (74)

where Jg−1(y) is the Jacobian matrix of the inverse transformation.
Procedure:

1. Determine the inverse transformation g−1.

2. Compute the Jacobian matrix Jg−1(y), which is

Jg−1(y) =


∂g−1

1

∂y1
· · · ∂g−1

1

∂yn
... . . . ...

∂g−1
n

∂y1
· · · ∂g−1

n

∂yn

 (75)

3. Calculate the determinant |det Jg−1(y)|.

4. Apply these to find fY (y) = fX(g
−1(y)) |det Jg−1(y)|.

Lecture 8

We did only exercises, suggested revising the distributions found at the start of the
refreshers
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Lecture 9

Box-Müller Transformation

The Box-Muller transformation is a method for generating independent, standard,
normally distributed random variables given two independent uniformly distributed
random variables. Let’s denote these uniformly distributed variables as U1 and U2,
where U1, U2 ∼ Uniform(0, 1).

The transformation consists of the following steps to produce two independent
standard normal variables, Z0 and Z1:

1. Compute two intermediate values based on U1 and U2:

R2 = −2 log(U1) (76)
Θ = 2πU2 (77)

2. Apply the Box-Muller transformation to obtain Z0 and Z1:

Z0 = R cos(Θ) =
√
−2 log(U1) cos(2πU2) (78)

Z1 = R sin(Θ) =
√
−2 log(U1) sin(2πU2) (79)

The Box-Muller transformation’s use of R2 and Θ directly relates to the concept
of polar coordinates, which offer a different method for representing points in a plane.
In polar coordinates, a point’s position is determined by its distance from the origin
and the angle formed with a reference direction.

In the context of the Box-Muller transformation:
• R represents the radius (distance from the origin) in polar coordinates. It

is defined as R =
√

−2 log(U1), where U1 is a uniformly distributed random
variable. The square of the radius, R2 = −2 log(U1), is used to ensure that the
distribution of R is such that when converted back to Cartesian coordinates
(using Z0 and Z1), it produces a normal distribution.

• Θ represents the angle in polar coordinates, defined as Θ = 2πU2, where U2

is another independent uniformly distributed random variable. This angle is
uniformly distributed between 0 and 2π, which ensures that the direction of the
generated point is random and uniformly distributed around the circle.

This method exploits the fact that if (Z0, Z1) are independent standard normal
random variables, their squared distance from the origin, Z2

0 + Z2
1 , follows the expo-

nential distribution when R2 = −2 log(U1).
Properties:

• The resulting variables Z0 and Z1 are independent.

• Both Z0 and Z1 follow a standard normal distribution, i.e., Z0, Z1 ∼ N(0, 1).
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Order Statistics

Order statistics provide a way to arrange random variables in ascending or descending
order. Given a sample of n iid continuous random variables X1, X2, . . . , Xn from a
distribution F (x), the kth order statistic, denoted X(k), is the kth smallest value in
the sample.

Distribution of a Single Order Statistic

The distribution function of the kth order statistic, X(k), can be derived using the
properties of continuous iid random variables. Let’s denote the probability density
function (pdf) of Xi as f(x) and the cumulative distribution function (cdf) as F (x).

The probability that X(k) is less than or equal to x is equivalent to the probability
that at least k out of the n observations fall at or below x. This can be expressed
using the binomial distribution:

FX(k)
(x) = P (X(k) ≤ x) =

n∑
j=k

(
n

j

)
[F (x)]j[1− F (x)]n−j (80)

The corresponding pdf is found by differentiating the cdf with respect to x:

fX(k)
(x) =

d

dx
F(k)(x) =

n!

(k − 1)!(n− k)!
[F (x)]k−1[1− F (x)]n−kf(x) (81)

For the smallest order statistic X(1), and the largest order statistic X(n), the density
functions are given by:

FX(1)
(x) = 1− [1− F (x)]n.

FX(n)
(x) = [F (x)]n.

fX(1)
(x) = n[1− F (x)]n−1f(x),

fX(n)
(x) = n[F (x)]n−1f(x).

Joint Distribution of Two Order Statistics

The joint distribution of two order statistics, X(j) and X(k) for j < k, can also be
derived. It accounts for the probability that X(j) falls in one interval and X(k) falls
in another, without any other values in between.

fX(j),X(k))(x, y) =
n!

(j − 1)!(k − j − 1)!(n− k)!
[F (x)]j−1[F (y)−F (x)]k−j−1[1−F (y)]n−kf(x)f(y)

(82)
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for x < y.
The joint density function for the smallest and largest order statistics, X(1) and

X(n), is particularly interesting as it captures the spread of the entire sample. It is
given by:

fX(1),X(n)
(x1, xn) = n(n− 1)[F (xn)− F (x1)]

n−2f(x1)f(xn),

for x1 < xn.

Properties and Applications

• Minimum and Maximum: The first and last order statistics, X(1) and X(n),
represent the minimum and maximum values in the sample, respectively.

• Medians and Percentiles: Middle order statistics can serve as empirical
medians or other percentiles, depending on their position.

• Range and Spacing: Differences between successive order statistics provide
information about the sample’s dispersion.

Lecture 10

Markov Inequality

Markov’s Inequality provides a way to bound the probability that a non-negative
random variable X is at least some positive value a. Formally, for any a > 0, the
inequality is given by:

P (X ≥ a) ≤ E[X]

a
(83)

Proof

Assume X is a continuous random variable with a probability density function f(x).
The expected value of X is defined as:

E[X] =

∫ ∞

−∞
xf(x)dx (84)

Considering X is non-negative, we modify the lower bound of integration:

E[X] =

∫ ∞

0

xf(x)dx (85)
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To establish Markov’s inequality, we consider the integral from a to infinity:

E[X] ≥
∫ ∞

a

xf(x)dx ≥
∫ ∞

a

af(x)dx = a

∫ ∞

a

f(x)dx (86)

Here,
∫∞
a

f(x)dx represents the probability P (X ≥ a). Thus, we derive:

E[X] ≥ aP (X ≥ a) (87)

Rearranging gives Markov’s inequality:

P (X ≥ a) ≤ E[X]

a
(88)

Special Cases

1. Chebyshev’s Inequality: Let X be a random variable with mean µ and
variance σ2. For any k > 0,

P (|X − µ| ≥ kσ) ≤ 1

k2
. (89)

2. Jensen’s Inequality: Let X be a random variable and ϕ a convex function.
Then,

ϕ(E[X]) ≤ E[ϕ(X)]. (90)

3. The Chernoff Bounds: Let X1, X2, . . . , Xn be independent random variables.
For any t > 0,

P (X ≥ a) ≤ inf
t>0

EetX

eta
. (91)

For t < 0, then

P (X ≤ a) ≤ inf
t<0

EetX

eta
. (92)

Lecture 11

Convergence of Random Variables

Convergence in Probability

A sequence of random variables {Xn} converges in probability towards the random
variable X if for every ϵ > 0,

lim
n→∞

P (|Xn −X| ≥ ϵ) = 0. (93)

This type of convergence is denoted as Xn
p−→ X and signifies that the probability of

Xn deviating from X by more than ϵ becomes arbitrarily small as n increases.
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Almost Sure Convergence

A sequence {Xn} converges almost surely (a.s.) to X if

P ( lim
n→∞

Xn = X) = 1. (94)

Denoted by Xn
a.s.−−→ X, it means that the events where Xn does not converge to X

occur with zero probability. This is a stronger form of convergence than convergence
in probability, implying that almost every sequence realization converges to X.

Convergence in Distribution

A sequence {Xn} converges in distribution to X if for all t at which the cumulative
distribution function (CDF) of X, FX(t), is continuous,

lim
n→∞

FXn(t) = FX(t). (95)

This is denoted as Xn
d−→ X and concerns the convergence of the distribution functions

rather than the random variables themselves.

Convergence in Quadratic Mean

A sequence {Xn} converges in quadratic mean to X if

lim
n→∞

E[(Xn −X)2] = 0. (96)

This type of convergence, denoted as Xn
qm−→ X, requires that the mean squared differ-

ence between Xn and X goes to zero as n approaches infinity. It implies convergence
in probability and is particularly useful for analyzing the properties of estimators in
statistics.

Convergence in Distribution

A sequence of random variables Xn converges in distribution to a random variable X
if for every continuity point x of FX(x), the CDF of X,

lim
n→∞

FXn(x) = FX(x). (97)
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Comparison and Examples

• Convergence in probability is useful for large-sample properties of estima-
tors but does not guarantee that a particular sequence realization will converge.

• Almost sure convergence is a stronger guarantee than convergence in prob-
ability, ensuring that almost every realization of the sequence converges to the
limit.

• Convergence in distribution is essential for understanding the limiting be-
havior of distributions, particularly in the context of the Central Limit Theorem.

• Convergence in quadratic mean is powerful for statistical inference, en-
suring not just convergence in probability but also that the average squared
discrepancies converge to zero.

Laws of Large Numbers

Weak Law of Large Numbers (WLLN)

The WLLN states that for a sequence of i.i.d. random variables X1, X2, . . . , Xn with
expected value E[Xi] = µ, the sample average converges in probability towards the
population mean. Formally, for any ϵ > 0,

lim
n→∞

P

(∣∣∣∣∣ 1n
n∑

i=1

Xi − µ

∣∣∣∣∣ > ϵ

)
= 0. (98)

Strong Law of Large Numbers (SLLN)

The SLLN asserts that the sample averages converge almost surely (with probability
1) to the expected value, that is,

P

(
lim
n→∞

1

n

n∑
i=1

Xi = µ

)
= 1. (99)

Lecture 12

The Central Limit Theorem (CLT)

Statement

Let X1, X2, . . . , Xn be a sequence of i.i.d. random variables with mean µ and vari-
ance σ2 < ∞. Define the sample mean X̄n = 1

n

∑n
i=1Xi. Then, as n → ∞, the

31



standardized sample mean Zn = X̄n−µ
σ/

√
n

converges in distribution to a standard normal
distribution, that is,

Zn
d−→ Z ∼ N(0, 1). (100)

Proof

For i.i.d. random variables X1, . . . , Xn with MGF mX(t), the MGF of their sum
Sn =

∑n
i=1 Xi is given by mSn(t) = [mX(t)]

n.
The MGF of the standardized variable Zn is derived by considering the transfor-

mation applied to Sn, resulting in:

mZn(t) = e−µt
√
n/σ

[
mX

(
t

σ
√
n

)]n
. (101)

Given Xi with mean µ and variance σ2, the MGF MX(t) near t = 0 can be
expanded as:

mX(t) = 1 + µt+
σ2t2

2
+ o(t2), (102)

where o(t2) represents terms of higher order that become negligible as t approaches
0.

Using the expansion of mX(t) and considering the limit as n approaches infinity,
we find that mZn(t) converges to the MGF of a standard normal distribution:

mZn(t) → et
2/2, (103)

demonstrating that Zn converges in distribution to N(0, 1).

Lecture 13

Simulating a Random Variable with a known CDF

Given a random variable X with a known CDF FX(x), the Inverse Transform Sam-
pling method involves the following steps:

1. Find the CDF FX(x) of the random variable X.

2. Compute the inverse of the CDF, denoted as F−1
X .

3. Generate a uniform random variable u ∼ Unif(0, 1).

4. Return the value X = F−1
X (u).

32



This method is based on the principle that if u is a uniform random variable on
the interval (0, 1), then the variable X = F−1

X (u) will have the distribution FX .
Below is a pseudocode representation of the Inverse Transform Sampling method:

1 # Pseudocode for simulating a random variable X
2 # using Inverse Transform Sampling
3

4 def inverse_transform_sampling(F_inv):
5 # Generate a uniform random number u from 0 to 1
6 u = random.uniform(0, 1)
7

8 # Compute the inverse CDF value
9 X = F_inv(u)

10

11 return X
12

13 # Example usage
14 # Define the inverse CDF function F_inv for the target distribution
15 # Call inverse_transform_sampling(F_inv) to simulate a random

variable

Listing 1: Inverse Transform Sampling Pseudocode

Simulating a random variable without a CDF

While some distributions are straightforward to sample from, others require more
sophisticated techniques. Two widely used methods for generating random variables
are the Box-Muller method for normal distributions and the Acceptance-Rejection
method for sampling from more complex distributions.

Box-Muller Method

The Box-Muller method is a procedure for generating pairs of independent, standard,
normally distributed (zero mean, unit variance) random variables from two indepen-
dent uniform random variables.

Given two independent random variables U1 and U2 uniformly distributed over
(0, 1), two independent standard normally distributed random variables Z0 and Z1

can be generated as follows:

Z0 =
√
−2 lnU1 cos(2πU2) (104)

Z1 =
√

−2 lnU1 sin(2πU2) (105)
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This method utilizes the polar coordinates system to transform uniform random
variables into normally distributed variables.

Below is a pseudocode representation of the Box-Muller Method
1 import math
2 import random
3

4 def box_muller ():
5 U1 = random.random () # Generate U1, U2 ~ Unif(0, 1)
6 U2 = random.random ()
7 Z0 = math.sqrt(-2 * math.log(U1)) * math.cos(2 * math.pi * U2)

# Standard normal Z0
8 Z1 = math.sqrt(-2 * math.log(U1)) * math.sin(2 * math.pi * U2)

# Standard normal Z1
9 return Z0, Z1

Listing 2: Box-Muller Method Pseudocode

Acceptance-Rejection Method

The Acceptance-Rejection method allows sampling from a distribution f(x) by uti-
lizing a simpler proposal distribution g(x) from which we can readily sample. The
method is based on finding an envelope of g(x) that covers f(x).

To simulate a random variable with density f(x):

1. Choose a proposal distribution g(x) such that there exists a constant c where
cf(x) ≥ g(x) for all x.

2. Generate a candidate X from g(x).

3. Generate a uniform random variable U on (0, 1).

4. Accept X as a sample from f(x) if U ≤ f(X)
cg(X)

; otherwise, reject X and return
to step 2.

This method is efficient if the proposal distribution g(x) closely resembles the
target distribution f(x), and the constant c is close to 1. The efficiency of the method
depends on the choice of g(x) and the acceptance rate, which ideally should be high
to minimize computational waste.

Below is a pseudocode representation of the Acceptance-Rejection Method
1 import random
2

3 def acceptance_rejection(f, g, c):
4 while True:
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5 X = sample_from_g () # Generate candidate X from proposal
distribution g

6 U = random.random () # Uniform random number U
7

8 # Acceptance condition
9 if U <= f(X) / (c * g(X)):

10 return X # Accept X as sample from f
11

12 # f: Target density function
13 # g: Proposal density function (from which we can sample directly)
14 # c: Constant such that c*g(x) >= f(x) for all x
15 # sample_from_g: Function to sample from g

Listing 3: Acceptance-Rejection Method Pseudocode

Lecture 14 - 15

We did only exercises, suggested revising everything done up until now

Lecture 16

Parameter Space and Statistical Models

Assuming data X1, . . . , Xn are realizations of a random variable under identical con-
ditions and are independent from one another, we represent this as:

X1, . . . , Xn
iid∼ Fθ,

where Fθ is the distribution function parameterized by θ within a parameter space
Θ. The parameter space Θ defines all possible values of the parameter θ, and the
statistical model is a collection of probability density functions (pdfs) or probability
mass functions (pmfs) defined as:

{f(·; θ) : θ ∈ Θ},

where the joint density (or mass) function for i.i.d. data is given by the product of
individual densities (or masses):

f(x1, . . . , xn; θ) =
n∏

i=1

f(xi; θ).
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Point Estimators

Point estimators are used to guess the value of a parameter θ from the data.
A point estimator θ̂ is a function mapping from the sample space to the parameter

space:
θ̂ : Rn → Θ,

where θ̂(x1, . . . , xn) becomes a deterministic value after observing data.
An estimator θ̂ is unbiased for estimating θ if its expected value equals θ for all

θ ∈ Θ, mathematically represented as:

Eθ[θ̂] = θ, ∀θ ∈ Θ.

Evaluating and comparing estimators is essential for selecting the most appropriate
method for parameter estimation. MSE is a common measure used to evaluate the
accuracy of an estimator (see Refresher 0.11 for more), and is defined as:

MSE = E[(θ̂ − θ)2].

For an unbiased estimator, MSE simplifies to the variance of the estimator, as shown
below:

MSE = E(θ̂ − θ)2 = E(θ̂ − Eθ̂)2 = Var(θ̂)

Using MSE we can compare the efficiency of multiple estimators. An estimator θ̂1 is
more efficient than θ̂2 if

Var(θ̂1) ≤ Var(θ̂2) ∀θ ∈ Θ;

and for some θ ∈ Θ,
Var(θ̂1) < Var(θ̂2).

This may not always be applicable however, as it may be possible that the variance
of an estimator is lower for some values and higher for others, as shown in the image
below (location of the image may vary).

In these cases, we compare the relative efficiency of θ̂1 and θ̂2, defined as

RE(θ̂1, θ̂2) =
Var(θ̂1)
Var(θ̂2)

(106)

and we say that θ̂1 is at least as efficient as θ̂2 at estimating θ if RE(θ̂1, θ̂2) ≤ 1 ∀θ.
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Lecture 17

Unbiased Estimators and Their Existence

Finding an unbiased estimator for a parameter of interest is a fundamental task. An
estimator θ̂ of a parameter θ is considered unbiased if its expected value equals the
parameter itself, i.e., E[θ̂] = θ. This concept is crucial in ensuring that the estimation
process does not systematically overestimate or underestimate the true parameter
value.

Example of an Unbiased Estimator

Consider a scenario where we are interested in estimating the probability Pθ[X ∈ A] =
g(θ) for a given set A and distribution Pθ. If we sample a single observation X1 ∼ Pθ,
the indicator function 1A(X1) serves as an unbiased estimator for Pθ[X ∈ A]. This is
because:

E[1A(X1)] = Pθ[1A(X1) = 1] = Pθ[X1 ∈ A]. (107)

Non-Existence of an Unbiased Estimator

However, an unbiased estimator does not always exist for every statistical measure.
An example is attempting to estimate p2 for a Bernoulli distribution with parameter
p. Suppose X1 ∼ Bern(p); we wish to find a function g(X1) such that E[g(X1)] = p2.
It can be shown that:
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Var(θ̂1)
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E[g(X1)] = pg(1) + (1− p)g(0) ̸= p2 ∀p ∈ [0, 1]. (108)

This equation cannot hold for all p within the interval [0, 1], implying that no
function g can serve as an unbiased estimator for p2. The contradiction arises from
the inability of g’s outputs for discrete inputs to satisfy a quadratic relationship across
all p values, illustrating the limitations in finding unbiased estimators for certain
parameters.

Fisher Information

Fisher information quantifies the amount of information that an observable random
variable X, or a sample (X1, X2, . . . , Xn), carries about an unknown parameter θ
upon which the probability of X or the joint probability of the sample depends.

There are two equivalent ways of defining Fisher information:

1. The Fisher information for a single observation X1 from a probability distri-
bution with parameter θ is defined as the expected value of the squared score
function:

IX1(θ) = E

[(
∂

∂θ
ln f(X1; θ)

)2
]

where f(X1; θ) is the probability density function (for continuous distributions)
or probability mass function (for discrete distributions) of X1, parameterized
by θ.

2. Alternatively, Fisher information can also be defined using the double derivative
of the log-likelihood function with respect to θ (for the proof see refresher 0.13):

IX1(θ) = −E
[
∂2

∂θ2
ln f(X1; θ)

]
We will primarily use the second definition involving the double derivative, as it often
simplifies the computation and theoretical analysis.

Fisher Information for a Sample of Observations

For a sample of n independent and identically distributed (i.i.d.) observations, the
Fisher information is the sum of the individual Fisher informations because the log-
likelihood of the sample is the sum of the log-likelihoods of the individual observations:

IXn(θ) = nI(θ)
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Conditions for Applicability

The application of Fisher information and the second definition, in particular, require
certain conditions: (Refresher 0.12)

• Differentiability: The log-likelihood function must be sufficiently smooth,
allowing for the existence and continuity of the first and second derivatives
with respect to θ.

• Regularity Conditions: Several regularity conditions must be met to ensure
that operations such as differentiation under the integral sign are valid and to
guarantee the existence of the expected values involved in the definitions.

Lecture 18

The Cauchy-Schwarz Inequality

The Cauchy-Schwarz inequality finds significant applications in statistics, particularly
in deriving properties of estimators and in proving the optimality of certain estimators
under specific conditions.

The Cauchy-Schwarz inequality can be stated as follows:
Let f : Rn → R and g : Rn → R be functions such that:∫

Rn

f 2(x) dx < ∞ and
∫
Rn

g2(x) dx < ∞, (109)

then, (∫
Rn

g(x)f(x) dx

)2

≤
(∫

Rn

f 2(x) dx

)(∫
Rn

g2(x) dx

)
. (110)

This inequality is significant for the derivation of the Cramér-Rao Lower Bound,
which sets a lower bound on the variance of unbiased estimators.

Regular Statistical Models

Definition: A statistical model, {f(·; θ) : θ ∈ Θ}, is considered regular if it satisfies
the following conditions:

• The support of f(·; θ), denoted as A = {x : f(x, θ) > 0}, is independent of θ.

• The function f(x; θ) is twice differentiable for any x ∈ Rn.
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• For any sample statistic T : Rn → R such that E|T (X1, . . . , Xn)| < ∞, one has
that:

∂

∂θ

∫
Rn

T (x)f(x; θ)dx =

∫
Rn

T (x)
∂

∂θ
f(x; θ)dx, (111)

∂2

∂θ2

∫
Rn

T (x)f(x; θ)dx =

∫
Rn

T (x)
∂2

∂θ2
f(x; θ)dx. (112)

The Cramér-Rao Lower Bound

Theorem: Let X1, . . . , Xn
iid∼ f(·; θ) within a regular statistical model {f(·; θ) : θ ∈

Θ}. If T is an unbiased estimator of θ, that is, ET = θ for any θ ∈ Θ, then:

Var(T ) ≥ 1

nIX1(θ)
, (113)

where IX1(θ) denotes the Fisher information in a single observation. This inequality
is known as the Cramér-Rao Lower Bound (CRLB).

If there exists a statistic T that achieves the CRLB, it is considered optimal and
is known as a Minimum Variance Unbiased Estimator (MVUE).

Sufficiency and the Fisher-Neyman Theorem

Definition: A sample statistic T = T (X1, . . . , Xn) is sufficient for estimating θ if the
conditional distribution of (X1, . . . , Xn) given T = t does not depend on θ; in other
words, for all θ ∈ Θ:

fθ(x1, . . . , xn | t) = f(x1, . . . , xn | t). (114)

Theorem(Fisher-Neyman), also known as Factorization Theorem:
Suppose X1, . . . , Xn

iid∼ f(·; θ) for θ ∈ Θ ⊂ Rd. A statistic T is sufficient for θ if
and only if there exist functions ν : Rd × Θ → R+ and W : Rn → R+ such that for
all x1, . . . , xn in the sample space:

f(x1, . . . , xn; θ) =
n∏

i=1

f(xi; θ) = ν(t, θ)W (x1, . . . , xn), (115)

where t = T (x1, . . . , xn), ν depends on the observations only through t, and W does
not depend on θ.
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Lecture 19

One-parameter Exponential Families

A probability density or mass function, f(·; θ), belongs to a one-parameter exponential
family of distributions if the set Ω = {x : f(x; θ) > 0} does not depend on θ and if
there exist functions:

• A : Θ → R;

• B : R → R;

• C : R → R;

• D : Θ → R;

such that the density or mass function can be expressed as:

f(x; θ) = exp {A(θ)B(x) + C(x) +D(θ)}1Ω(x), (116)

Writing the function in this form simplifies the identification of ν and W for deter-
mining a sufficient statistic.

The Rao-Blackwell Theorem

Theorem: Given an estimator T of a parameter θ that is unbiased, i.e., E[T ] = θ,
and another statistic S that is sufficient for θ, the Rao-Blackwell theorem states that
the conditional expectation of T given S, denoted by E[T | S], is also an unbiased
estimator of θ. Moreover, E[T | S] is at least as good as T in terms of the mean
squared error (MSE), meaning:

E
[
(E[T | S]− θ)2

]
≤ E

[
(T − θ)2

]
, (117)

with equality if and only if T is a function of S.
Proof: Given the unbiasedness of T and applying the law of total expectation

and total variance, we establish that E[T | S] maintains unbiasedness and achieves a
lower or equal MSE compared to T .

Completeness of a Statistic

Definition of Completeness: Suppose X1, . . . , Xn
iid∼ f(·; θ) for θ ∈ Θ. A sample

statistic T = T (X1, . . . , Xn) is complete for θ if, for any function g : R → R such that
E[g(T )] = 0, it holds that P[g(T ) = 0] = 1.
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Lecture 20

Lehmann and Scheffè Theorem

The Rao-Blackwell Theorem offers a methodology to improve an unbiased estimator if
a sufficient statistic exists. However, sufficiency alone doesn’t guarantee the optimal-
ity of an estimator. The Lehmann-Scheffé Theorem extends this by introducing the
concept of a complete statistic, allowing the identification of the Minimum Variance
Unbiased Estimator (MVUE).

Theorem (Lehmann and Scheffè) Let:

1. X1, . . . , Xn
iid∼ Pθ, where θ ∈ Θ.

2. T = T (X1, . . . , Xn) is sufficient and complete for estimating θ.

3. θ̂ = g(T ) is an unbiased estimator of θ.

under the given conditions, θ̂ is the Minimum Variance Unbiased Estimator (MVUE)
of θ.

Proof:
The Rao-Blackwell theorem states that if θ̂ is an unbiased estimator of θ, and T

is a sufficient statistic for θ, then the estimator θ̂∗ = E[θ̂ | T ] has a variance that is
less than or equal to the variance of θ̂, i.e., Var(θ̂∗) ≤ Var(θ̂), and θ̂∗ is also unbiased
for θ.

1. By assumption, θ̂ = g(T ) is an unbiased estimator for θ. Thus, E[θ̂] = θ.

2. Since T is sufficient for θ, by the Rao-Blackwell theorem, we consider θ̂∗ = E[θ̂ |
T ] = E[g(T ) | T ]. However, since θ̂ = g(T ) is a function of T alone, we have
θ̂∗ = g(T ), which means θ̂∗ is the same as our original estimator θ̂.

3. The completeness of T for θ implies that if E[h(T )] = 0 for all θ ∈ Θ, then
h(T ) = 0 almost surely. Since θ̂ is unbiased and a function of the complete
sufficient statistic T , it is the unique function (up to almost everywhere equal-
ity) satisfying its own expected value equation, making it the MVUE by the
definition of completeness and the Rao-Blackwell theorem.

Conclusion: θ̂ = g(T ) is the MVUE for θ, leveraging the properties of sufficiency,
unbiasedness, completeness, and the Rao-Blackwell theorem.
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Determination of a complete statistic

The determination of a complete statistic may be challenging, unless we have a one-
parameter exponential family. If

f(x; θ) = exp {A(θ)B(x) + C(x) +D(θ)} (118)

Then T =
n∑

i=1

B(Xi) is sufficient and complete

Lecture 21

We did only exercises, suggested revising the last 4 lectures.

Lecture 22

Maximum Likelihood Estimator

Given a parameter vector θ and a data set X = {x1, x2, . . . , xn}, the likelihood
function is defined as:

L(θ;X) =
n∏

i=1

f(xi | θ) (119)

where f(xi | θ) is the probability mass function (for discrete data) or the probability
density function (for continuous data). The log-likelihood function (see refresher 0.14)
is defined as:

ℓ(θ;X) =
n∑

i=1

log f(xi | θ) (120)

The goal of Maximum Likelihood Estimation (MLE) is to find the parameter θ̂ that
maximizes ℓ(θ;X). This involves taking the derivative of ℓ(θ;X) with respect to
θ, setting it equal to zero, and solving for θ. This derivative, known as the score
function, is given by:

d

dθ
ℓ(θ;X) =

n∑
i=1

d

dθ
log f(xi | θ) (121)

Setting the score function equal to zero gives the equations necessary to solve for
θ̂. To verify that the point θ̂ found is indeed a maximum, we examine the second
derivative of ℓ(θ;X) with respect to θ, which is:
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d2

dθ2
ℓ(θ;X) =

n∑
i=1

d2

dθ2
log f(xi | θ) (122)

For a maximum, this second derivative evaluated at θ̂ should be negative. In the
case of multiple parameters, the Hessian matrix, which is a matrix of second-order
partial derivatives, is used to determine concavity:

H(θ;X) =


∂2ℓ(θ;X)

∂θ21
· · · ∂2ℓ(θ;X)

∂θ1∂θn
... . . . ...

∂2ℓ(θ;X)
∂θn∂θ1

· · · ∂2ℓ(θ;X)
∂θ2n

 (123)

The criterions for a maximum in this multivariate case are:

1. the Hessian matrix evaluated at θ̂ is negative definite

2. det
(
H(θ̂, X)

)
> 0

Lecture 23

Sufficient Statistic and Maximum Likelihood Estimation

We can use the Fisher-Neyman Theorem to find the MLE by following these steps:

1. Write the likelihood function.

2. Apply the Factorization Theorem:

• Find a way to express the likelihood function in the form required by the
Fisher-Neyman factorization theorem.

• Identify T (X1, . . . , Xn), the function ν, and the function W .

3. Maximize the Likelihood:

• Focus on maximizing ν(t, θ) with respect to θ since W (X1, . . . , Xn) does
not affect the maximization.

• Differentiate ν(t, θ) with respect to θ and set the derivative to zero to find
the MLE. Ensure that the second derivative is negative, confirming that
the solution corresponds to a maximum.
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We can just maximise the function ν(t, θ) because, as shown in the image below, the
point of maximum for ν(t, θ) will also be the point of maximum of ν(t, θ)W (X1, . . . , Xn)

From the Fisher-Neyman theorem we have the following theorem.
Theorem: If T (X1, . . . , Xn) is a sufficient statistic for a parameter θ, and if there

exists a unique maximum likelihood estimator (MLE) of θ, then this unique MLE
can be expressed as a function of the sufficient statistic T (X1, . . . , Xn). (see refresher
0.15)

Lecture 24

Estimation of Transformed Parameters

Assume X1, . . . , Xn
iid∼ Fθ and that we have a maximum likelihood estimator (MLE),

θ̂. We aim to find an estimator for η.
Theorem: Let X1, . . . , Xn

iid∼ Fθ with θ ∈ Θ, and suppose that θ̂ is a maxi-
mum likelihood estimator (MLE). Then for every bijective function g : Θ → Ω, the
maximum likelihood estimator of η (where η ∈ Ω), η̂, is given by η̂ = g(θ̂).

Proof: For every θ ∈ Θ, we have L(θ) = L
(
g−1 (g(θ))

)
= L

(
g−1(η)

)
. Assuming
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max
θ∈Θ

L(θ) = L(θ̂), then L(θ̂) = L
(
g(θ̂)

)
. From here, we deduce that θ̂ = g−1(η̂)

which is equivalent to η̂ = g(θ̂). (see refresher 0.16 for what logit/probit means from
the example)

Asymptotic Properties of Maximum Likelihood Estimators

MLEs are said to have some asymptotic properties:

• The MLE θ̂ is said to be consistent if θ̂ converges in probability to the true
parameter θ as the sample size n tends to infinity. Formally,

θ̂
p−→ θ as n → ∞.

Consistency ensures that the MLE estimates are reliable with large samples.

• Under certain regularity conditions, the MLE θ̂ is not only consistent but also
asymptotically normally distributed. As n → ∞, the scaled difference between
the MLE and the true parameter approximates a normal distribution:

√
n(θ̂ − θ)

d−→ N(0, I(θ)−1),

where I(θ) is the Fisher information.

For the asymptotic normality of MLEs, the following regularity conditions must
be satisfied:

1. The parameter space Θ should be an open subset of Rk.

2. The true parameter value θ must lie in the interior of Θ.

3. The likelihood function must be three times continuously differentiable
with respect to θ.

4. The Fisher information I(θ) is positive and is continuous as a function of
θ. (In the n dimensional case, we have that the Fisher information matrix
In(θ) must be positive definite and the function of each entry is continuous
for any θ)

5. The likelihood equations have a unique solution, and the log-likelihood
function should satisfy uniform convergence properties. (see refresher 0.17)

• Asymptotically the MLE is the MVUE

• θ̂n
d→ Y ∼ Nd(θ,

I−1(θ)
n

)
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Multidimensional MLE Asymptotics

For a vector of parameters θ ∈ Rk, the MLE θ̂ extends the unidimensional asymptotic
properties. The distribution of the estimator vector can be expressed as:

√
n(θ̂ − θ)

d−→ N(0, Ik(θ)
−1),

where Ik(θ) is the Fisher information matrix. This result is fundamental for multi-
variate statistical inference.

The Newton-Raphson algorithm is a root-finding method that uses the first and
second derivatives of a function to rapidly converge on a solution that makes the func-
tion zero. This method is particularly useful in the context of statistical estimation
and numerical optimization.

Newton-Raphson Algorithm

Unidimensional Case

In the unidimensional case, the algorithm seeks to find the roots of a function f(x)
by iteratively moving closer to the solution starting from an initial guess x0. The
update rule is given by:

xt+1 = xt −
f(xt)

f ′(xt)

where f ′(x) is the derivative of f(x).
This method is commonly used to find the maximum likelihood estimates of pa-

rameters in statistical models by setting f(x) as the derivative of the log-likelihood
function, thus solving f ′(x) = 0.

Multidimensional Case

In the multidimensional case, the algorithm extends to finding roots of a vector-valued
function F(x). The update formula is:

xt+1 = xt − [J(xt)]
−1F(xt)

where J(xt) is the Jacobian matrix of partial derivatives of F at xt.

Convergence

The convergence of the Newton-Raphson algorithm depends critically on the choice
of the initial guess and the nature of the function:
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• Rapid Convergence: Near the root, the algorithm converges quadratically,
making it very efficient for practical use.

• Sensitivity: The method can be sensitive to the initial guess, especially if f ′(x)
is near zero or the function is not well-behaved.

Lecture 25

Introduction to Bayesian Statistics

In frequentist statistics, given a sample X1, . . . , Xn, we estimate θ, a parameter or
a vector of parameters, which then enables us to predict the outcome of a new data
point using the probability P(Xn+1 | θ̂).

In Bayesian statistics, however, we treat θ itself as a random variable. This
approach allows us to use all available information, encapsulated in X1, . . . , Xn, to
update our beliefs about the distribution of θ.

Bayes’ Theorem

The foundation of Bayesian statistics is Bayes’ Theorem, which is used to update
our probability estimate for a hypothesis as more evidence or information becomes
available.

Bayes’ Theorem (Simple Form)

Bayes’ Theorem in its simple form is expressed as:

P(Ci | B) =
P(B | Ci)P (Ci)

P(B)

where P(B) is the probability of the evidence, and P(B | Ci) is the probability of the
evidence given that hypothesis Ci is true. (proof refresher 0.18)

Bayes’ Theorem (General Form)

Assuming C1, . . . , Ck are partitions of the sample space and each P(Ci) > 0 for
i = 1, . . . , k, and let B be an event with P(B) > 0. Bayes’ Theorem can then be
generalized as:

P(Ci | B) =
P(B | Ci)P(Ci)∑k
j=1 P(B | Cj)P(Cj)

(124)
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Proof of General Bayes’ Theorem

First, recognize that P(Ci | B) = P(Ci,B)
P(B)

. Also, P(B) =
∑k

j=1 P(B,Cj) can be rewrit-
ten using the simple form of Bayes’ Theorem as

∑k
j=1 P(B | Cj)P(Cj). Combining

these, we arrive at the general form of Bayes’ Theorem.

Bayesian Model

To define a Bayesian model, we begin by specifying a statistical model for the data
conditional on a parameter θ ∈ Θ. The model is expressed as:

M = {f(· | θ), θ ∈ Θ} (125)

where f(· | θ) represents the probability distribution of the data given the parameter
θ.

Next, we assume a prior distribution for θ, denoted by θ ∼ G, with a prob-
ability density function g(θ). This prior should reflect prior knowledge about the
phenomenon being modeled:

θ ∼ G(θ) (126)

Note: Specifying the model M and the prior G implies that observations Xi are
not independent and identically distributed (iid), even if Xi ⊥ Xj | θ. This is because
the prior introduces a dependency through θ. Under a Bayesian model, the data are
exchangeable rather than independent. Exchangeability means that any permutation
of the data is equally likely, which is a weaker condition than independence and is
more appropriate when a common prior affects all observations.

Under the assumption of exchangeability, we define the likelihood function as:

Lx(θ) =
n∏

i=1

f(xi | θ) (127)

where we assume that X1, . . . , Xn are conditionally i.i.d. from f(· | θ) given θ.
With this, we can now define the posterior distribution:

g (θ | X1, . . . , Xn) ∝ Lx(θ)g(θ) (128)

where ∝ indicates that it is equal up to a proportional constant, defined as:

C =
1∫∞

−∞
∏n

i=1 f(xi | θ)g(θ) dθ
(129)

49



Bayesian Inference using Bayes’ Rule

The core of Bayesian inference is updating our belief about θ after observing data
X1, . . . , Xn. This is done by applying Bayes’ rule to find the posterior distribution of
θ given the data.

.

Theorem (Bayesian Updating): The posterior density function of θ given X1, . . . , Xn

is:
g(θ | X1, . . . , Xn) =

g(θ)
∏n

i=1 f(xi | θ)
m(X1, . . . , Xn)

(130)

where the marginal likelihood m(X1, . . . , Xn) is given by:

m(X1, . . . , Xn) =

∫ n∏
i=1

f(xi | θ)g(θ) dθ (131)

Making Predictions and Determining Credible Intervals

With the posterior distribution g(θ | X1, . . . , Xn), we can make predictions for future
observations and perform inference on θ. One common inferential goal is to compute
credible intervals for θ, which are intervals [θ1, θ2] within Θ such that:

P(θ1 < θ < θ2 | X1, . . . , Xn) ≥ 1− α (132)

This is equivalent to: ∫ θ2

θ1

g(θ | X1, . . . , Xn) dθ ≥ 1− α

Lecture 26

Definition: a prior is conjugate for a statistical model M = {f(·, θ), θ ∈ Θ} if the
posterior distribution has the same analytical form of the prior with the updated
parameters

Lecture 27

Bayesian Statistics and Estimation

In frequentist statistics, we often define optimality criteria based on properties such
as unbiasedness, efficiency, and consistency, with methods like maximum likelihood
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estimation being prevalent. In contrast, Bayesian statistics introduces a probabilistic
approach to estimation, incorporating prior knowledge through a prior distribution.

Another way of defining optimal estimators is through the minimax criterion,
where θ̂ is defined as minimax if

R(θ̂) = min
θ̂∈A

max
θ∈Θ

R(θ, θ̂) (133)

Where A is the family of all estimators We begin by defining a set of possible actions
A, each representing a potential estimator of an unknown parameter θ. We associate
with each action a ∈ A a loss function L : Θ × A → R+, where Θ is the parameter
space, defined by:

L(θ, a) = the loss incurred from estimating θ with a. (134)

We consider a loss function that quantifies the "cost" of the difference between
the true parameter value and the estimator. Common choices for L include:

1. Quadratic Loss Function: L(θ, a) = (θ − a)2. This loss penalizes squared
deviations from the true value, emphasizing larger errors more heavily.

2. Absolute Error Loss Function: L(θ, a) = |θ − a|. This function penalizes
the absolute value of the error, providing a linear response to the estimation
error.

3. 0-1 Loss Function:

L(θ, a) =

{
1 if θ ̸= a,

0 if θ = a.

This loss function is useful for categorical decisions, penalizing any incorrect
estimation without considering the magnitude of the error.

The risk function, which represents the expected loss for an estimator, is defined
as:

R(θ, θ̂) = E[L(θ, θ̂)] =
∫

L(θ, θ̂(x1, . . . , xn))
n∏

i=1

f(xi|θ) dx1 · · · dxn, (135)

where f(xi|θ) denotes the likelihood of observing xi given θ.
In Bayesian statistics, we integrate over all possible values of θ weighted by a prior

distribution g(θ), leading to the Bayesian risk function:

r(g, θ̂) =

∫
R(θ, θ̂)g(θ) dθ =

∫ (∫
L(θ, θ̂(x1, . . . , xn))

n∏
i=1

f(xi|θ) dxi

)
g(θ) dθ.

(136)

51



The optimal Bayesian estimator θ̂g is defined as the action (or estimator) that
minimizes the Bayesian risk:

θ̂g = argmin
θ̂∈A

r(g, θ̂), (137)

and equivalently minimizes the posterior risk:

r(g, θ̂g|x1, . . . , xn) = min
θ̂∈A

∫
L(θ, θ̂)g(θ|x1, . . . , xn) dθ. (138)

Definition: A Bayesian estimator for θ, with respect to the loss function L and
prior g, is the statistic θ̂g that minimizes the Bayesian risk function, incorporating
both the likelihood of the data given the parameter and the prior distribution of the
parameter.

Note: Depending on the loss, we have different optimal estimators:

• If quadratic loss is used, then the optimal bayesian point is the posterior mean

• If absolute error loss is used, then the optimal bayesian point estimator is the
median

• If 0-1 loss is used, the optimal bayesian point estimator is the Maximum A
Posteriori (MAP) - ie. the value that maximizes the posterior (you do the same
procedure as MLE but instead of taking the derivative of log (f(x)) and setting
it to zero, you take g (θ | X1, . . . , Xn))

Lecture 28

Introduction to Statistical Hypothesis Testing

Given a sample X1, . . . , Xn that are independently and identically distributed (iid)
from a distribution Fθ, where the parameter θ belongs to a parameter space Θ, hy-
pothesis testing involves comparing two hypotheses. These are the null hypothesis
H0 : θ ∈ Θ0 and the alternative hypothesis H1 : θ ∈ Θ1, with Θ0,Θ1 ⊂ Θ.

Definitions and Concepts

• Simple hypothesis: Specifies a fixed numerical value for θ. For example,
H0 : θ = θ0.

• Composite hypothesis: Specifies a set of possible values for θ. For example,
H0 : θ ∈ [θ0, θ1].
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• One-sided hypothesis: Considers a one-directional alternative. For example,
H0 : θ ≤ θ0 against H1 : θ > θ0.

• Two-sided hypothesis: Considers both directions as alternatives. For exam-
ple, H0 : θ = θ0 against H1 : θ ̸= θ0.

• Hypothesis test: A statistical procedure used to test H0 against H1.

Critical Region and Types of Errors

Critical Region Definition: For a given test statistic T , the critical region is the
set of values of T for which the null hypothesis H0 is rejected.

In hypothesis testing, two types of errors can occur:

• Type I Error (False Positive): Rejecting H0 when it is true. The probability
of making a Type I error is denoted by α.

• Type II Error (False Negative): Not rejecting H0 when it is false. The
probability of making a Type II error is denoted by β.

The following table summarizes these errors along with correct decisions:

Predicted Positive Predicted Negative
Actual Positive True Positive (TP) False Negative (FN) - Type II Error
Actual Negative False Positive (FP) - Type I Error True Negative (TN)

Probabilities of Errors

The error probabilities α and β are defined as:

α = P(Reject H0 | H0), (139)
β = P(Not reject H0 | H1). (140)

Typically, α and β are chosen to balance the risks of these errors, often by selecting
a small value for α.

Definition of β for Composite H0

When H0 is composite, α is defined as the supremum of the rejection probabilities
under all θ in Θ0:

α = sup
θ∈Θ0

P(Reject H0 | θ). (141)
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β is similarly defined as:

β = inf
θ∈Θ1

P(Not reject H0 | θ), (142)

reflecting the smallest probability of a Type II error over all parameter values that
make H1 true.

Lecture 29

Power Function

Power Function Definition:
Let X1, . . . , Xn

iid∼ Fθ. Let H0 : θ ∈ Θ0 and H1 : θ ∈ Θ1, with Θ0 ∪ Θ1 = Θ and
Θ0 ∩Θ1 = Ø. Let T be the test statistic of a test with critical region CR. The power
function is defined as

p(θ) : θ → P(reject H0 | θ) = P ((X1, . . . , Xn) ∈ CR | θ) (143)

If θ ∈ Θ0 then p(θ) is the probability of type I error and if θ ∈ Θ1, it’s 1−probability
of type II error.

Neyman Pearson Theorem

Neyman Pearson Theorem: Let X be a random variable with

H0 : x ∼ f(· | θ0) H1 : X ∼ f(· | θ1) (144)

If k > 0 is such that
P
(
f(x | θ1)
f(x | θ0

) > k

)
= α (145)

then the test with critical region CR = {x : f(x | θ1) > kf(x | θ0)} has the minimum
probability of type II error among the tests with size α.
Proof: Consider a test defined by the critical region:

CR =

{
x :

f(x | θ1)
f(x | θ0)

> k

}
where k is chosen such that:

P
(
f(X | θ1)
f(X | θ0)

> k | θ0
)

= α
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This ensures that the test has size α.
Suppose there is an alternative test defined by another critical region CR′, which

also has size α. We need to show that for all θ1 ∈ Θ1:

P(X ∈ CR | θ1) ≥ P(X ∈ CR′ | θ1)

Define:
A =

{
x :

f(x | θ1)
f(x | θ0)

> k

}
and B = CR′

Then,

P(X ∈ A | θ1) =
∫
A

f(x | θ1) dx

P(X ∈ B | θ1) =
∫
B

f(x | θ1) dx

We can write the difference in power between the two tests as:∫
A∩B

f(x | θ1) dx+

∫
A\B

f(x | θ1) dx−
∫
B\A

f(x | θ1) dx

Given that f(x|θ1)
f(x|θ0) > k for x ∈ A and ≤ k for x /∈ A, it follows that:∫

A\B
f(x | θ1) dx ≥ k

∫
A\B

f(x | θ0) dx

∫
B\A

f(x | θ1) dx ≤ k

∫
B\A

f(x | θ0) dx

Since the size of both tests is α, we have:∫
A\B

f(x | θ0) dx =

∫
B\A

f(x | θ0) dx

Thus, ∫
A\B

f(x | θ1) dx ≥
∫
B\A

f(x | θ1) dx

This implies:
P(X ∈ CR | θ1) ≥ P(X ∈ CR′ | θ1)

which shows that the Neyman-Pearson test is the most powerful test.
Note: if there exists a sufficient statistics T for the model, the likelihood ratio can

be expressed in terms of functions involving T , which are ν(t, θ) and w(x1, . . . , xn).
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The expression simplifies because w(x1, . . . , xn) cancels out in the numerator and
the denominator, resulting in:

ν(t, θ1)

ν(t, θ0)

The simplified form of the likelihood ratio allows establishing a rejection rule based
on the statistic T rather than computing the likelihood ratio for every data point.
This is particularly useful when T has a simple relationship with the parameter θ:

• Monotonely Increasing Function of X: If T increases as X increases, then
you reject H0 if T > k, where k is a threshold determined by the desired
significance level α.

• Monotonely Decreasing Function of X: If T decreases as X increases, then
you reject H0 if T < k.

Lecture 30

The problem of the Neyman Pearson theorem is that it doesn’t account for composite
hypothesis, so to extend it, we use the following definition.

Definition Let X1, . . . , Xn
iid∼ Fθ and consider a testing problem involving two

composite hypothesis, with H0 : θ ∈ Θ0 and H1 : θ ∈ Θ1, a test A based on X1, . . . , Xn

is said to be the Uniformly Most Powerful (UMP) test of size α if A has size α and
for any alternative test B with ≤ α, A has the same or greater power than B for every
θ ∈ Θ1

Lecture 31

Leibniz Rule:

∂

∂s

∫ b(s)

a(s)

f(s, y) dy = f (s, b(s))· ∂
∂s

b(s)−f (s, a(s))· ∂
∂s

a(s)+

∫ b(s)

a(s)

∂

∂s
f(s, y)dy (146)
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Refresher

Refresher of last year

Distributions

• Normal Distribution (N (µ, σ2))

– PDF: f(x) = 1√
2πσ2

exp
(
− (x−µ)2

2σ2

)
– Parameters: Mean µ ∈ R, Variance σ2 > 0

• Exponential Distribution (Exp(λ))

– PDF: f(x) = λe−λx for x ≥ 0

– Parameter: Rate λ > 0

• Uniform Distribution (U(a, b))

– PDF: f(x) = 1
b−a

for a ≤ x ≤ b

– Parameters: Interval endpoints a < b

• Gamma Distribution (Gamma(α, β))

– PDF: f(x) = βα

Γ(α)
xα−1e−βx for x > 0

– Parameters: Shape α > 0, Rate β > 0

• Beta Distribution (Beta(α, β))

– PDF: f(x) = xα−1(1−x)β−1

B(α,β)
for 0 < x < 1

– Parameters: Shape α > 0, β > 0

• T Distribution (Student’s T)

– PDF: f(t) =
Γ( k+1

2 )
√
πkΓ( k

2 )

(
1 + t2

k

)− k+1
2 for −∞ < t < ∞

– Parameters: Degrees of freedom k > 0

– Notes: Used for estimating the mean of a normally distributed popula-
tion when the sample size is small and population standard deviation is
unknown. It is given by X√

Y
k

where X ∼ N(0, 1) and Y ∼ χ2(k)

• Cauchy Distribution
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– PDF: f(x) = 1

πθ
(
1+(x−m

θ )
2
) for −∞ < x < ∞

– Parameters: Location parameter m ∈ R, scale parameter θ > 0

– Notes: The mean and variance are undefined. Known for its "heavy tails."
It’s given by X1

X2
where X1, X2

i.i.d∼ N(0, 1)

• F Distribution

– PDF: f(x) =
Γ( k+r

2 )( k
r )

k/2
xk/2−1

Γ( k
2 )Γ(

r
2)(1+

k
r
x)

k+r
2

for x > 0

– Parameters: Degrees of freedom k > 0 and r > 0

– Notes: Used in the analysis of variance, comparing the variances of different
samples.

• Logistic Distribution

– PDF: f(x) = e−
x−µ
s

s

(
1+e−

x−µ
s

)2 for −∞ < x < ∞

– Parameters: Mean µ ∈ R, scale s > 0

– Notes: Used for modeling growth, and in logistic regression.

• Log-Normal Distribution

– PDF: f(x) = 1
xσ

√
2π

exp
(
− (lnx−µ)2

2σ2

)
for x > 0

– Parameters: Mean µ ∈ R, standard deviation σ > 0

– Notes: If X is log-normally distributed, then ln(X) is normally distributed.
Often used to model stock prices.

• Pareto Distribution

– PDF: f(x) = α·k
xα+1 · 1(k,+∞)

– Parameters: Shape α > 0, scale k > 0

– Notes: Used to model the distribution of wealth, sizes of cities, etc.

Discrete Distributions

• Binomial Distribution (Bin(n, p))

– PMF: f(k) =
(
n
k

)
pk(1− p)n−k for k = 0, 1, . . . , n
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– Parameters: Number of trials n ≥ 0, Success probability p ∈ [0, 1]

• Poisson Distribution (Pois(λ))

– PMF: f(k) = λke−λ

k!
for k = 0, 1, 2, . . .

– Parameter: Rate λ > 0

• Geometric Distribution (Geom(p))

– PMF: f(k) = p(1− p)k−1 for k = 1, 2, . . .

– Parameter: Success probability p ∈ [0, 1]

• Negative Binomial Distribution (NegBin(r, p))

– PMF: f(k) =
(
k+r−1

k

)
pr(1− p)k for k = 0, 1, . . .

– Parameters: Number of successes r > 0, Success probability p ∈ [0, 1]

• Hypergeometric Distribution (Hypergeom(N,K, n))

– PMF: f(k) = (Kk)(
N−K
n−k )

(Nn)
for k = 0, 1, . . . ,min(K,n)

– Parameters: Population size N , Number of successes in population K,
Sample size n

0.1 Countable and uncountable sets

In mathematics, the concepts of countable and uncountable sets are crucial in under-
standing the different sizes of infinity and the structure of the real number line.

A set is countable if it is finite, or if it has the same cardinality as the set of
natural numbers N. In other words, a set S is countable if there exists a bijection
(a one-to-one correspondence) between S and N, or if S can be listed in a sequence
(s1, s2, s3, . . .) where every element of S appears exactly once in the sequence. This
implies that the elements of a countable set can be enumerated without omission.
Examples:

• The set of natural numbers N = {1, 2, 3, . . .} is countable.

• The set of integers Z = {. . . ,−2,−1, 0, 1, 2, . . .} is countable.

• The set of rational numbers Q, which can be written as fractions of integers, is
countable.
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A set is uncountable if it is not countable, meaning there is no bijection between the
set and the set of natural numbers N. Uncountable sets have a higher cardinality (size
of infinity) than countable sets. The most well-known example of an uncountable set
is the set of real numbers R.

0.2 Kernel Functions

Kernel functions serve as the foundation for a wide range of applications, from solving
differential equations to data classification and pattern analysis.

In the field of integral transforms, a kernel function plays a crucial role in trans-
forming one function into another via integration. This function, when integrated in
conjunction with another function, results in a newly transformed function. Examples
include:

• The exponential function e−st used in the Laplace transform.

• The sine and cosine functions in the Fourier transform, represented as eiωt.

• General kernel functions K(x, y) in convolution integrals and other transforms.

0.3 Series

Geometric Series

A geometric series is a sequence of terms where each subsequent term is the product
of the previous term and a constant known as the common ratio. If we let the series
start from an arbitrary term indexed at k, the series can be expressed as:

S = ark + ark+1 + ark+2 + · · · (147)

Here, a represents the initial term of the series (when k = 0), r is the common
ratio, and k is the starting index of the summation, which can be any integer, allowing
the series to begin at any term.

• For a finite geometric series starting at an arbitrary term k and ending at term
n, the sum can be represented using the summation notation as:

Sk,n =
n∑

i=k

ari (148)

The formula for the sum of the first n terms from the start index k (inclusive)
is given by:
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Sk,n = a

(
rk − rn+1

1− r

)
, for r ̸= 1. (149)

• For an infinite geometric series starting from an arbitrary term k, the sum,
assuming |r| < 1, is:

Sk,∞ =
∞∑
i=k

ari = a
rk

1− r
. (150)

Arithmetic Series

An arithmetic series is the sum of the terms of an arithmetic sequence, where each
term is derived by adding a constant difference to the previous term. When consid-
ering the series starting from an arbitrary term indexed at k, the sum of the series
up to the n-th term can be defined as:

Sk,n =
n∑

i=k

(a+ d(i− 1)) , (151)

where a is the first term of the sequence, d is the common difference, and i
represents the index of the term within the sequence.

The formula for the sum of terms from the arbitrary start index k to the n-th
term is given by:

Sk,n =
(n− k + 1)

2
(2a+ (n− k)d) , (152)

This formula accounts for the sum of an arithmetic series starting from an arbitrary
index k to the n-th term, adjusting the classical formula to accommodate the arbitrary
starting point.

Exponential Series

The exponential series is the expansion of the exponential function ex as an infinite
series:

eb = 1 + b+
b2

2!
+

b3

3!
+ · · · =

∞∑
k=0

bk

k!
. (153)
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0.3.1 Taylor Series

A Taylor series expands a function into an infinite sum of terms calculated from the
values of its derivatives at a single point:

f(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 + · · · =

∞∑
n=0

f (n)(a)

n!
(x− a)n. (154)

Popular expansions are

• ex

ex = 1 + x+
x2

2!
+

x3

3!
+ · · ·+ xn

n!
+ · · · (155)

• sin(x)

sin(x) = x− x3

3!
+

x5

5!
− x7

7!
+ · · ·+ (−1)n

x2n+1

(2n+ 1)!
+ · · · (156)

• cos(x)

cos(x) = 1− x2

2!
+

x4

4!
− x6

6!
+ · · ·+ (−1)n

x2n

(2n)!
+ · · · (157)

• ln(1 + x)

ln(1 + x) = x− x2

2
+

x3

3
− x4

4
+ · · ·+ (−1)n+1x

n

n
+ · · · (158)

0.4 Chi-squared statistic

The chi-squared statistic is a measure of the discrepancy between observed and ex-
pected frequencies under a specific hypothesis. It is defined as:

χ2 =
∑ (Oi − Ei)

2

Ei

(159)

where:

• Oi represents the observed frequency for the ith category,

• Ei represents the expected frequency for the ith category, as predicted by the
hypothesis,

• The summation runs over all categories involved in the analysis.
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The chi-squared statistic is widely used in various statistical tests, including:

1. Goodness-of-Fit Test: To determine how well the observed data fit a specified
distribution.

2. Test of Independence: To assess whether there is an association between two
categorical variables in a contingency table.

3. Homogeneity Test: To check if different populations have the same distribu-
tion of a categorical variable.

Characteristics

• The chi-squared statistic is always non-negative.

• A higher chi-squared value indicates a greater discrepancy between observed
and expected frequencies, which may lead to rejecting the null hypothesis.

• The distribution of the chi-squared statistic under the null hypothesis follows a
chi-squared distribution, with the degrees of freedom depending on the specifics
of the test being performed.

Calculation of Degrees of Freedom

• In a goodness-of-fit test, the degrees of freedom are typically n− 1− p, where n
is the number of categories, and p is the number of parameters estimated from
the data.

• In a test of independence within a contingency table of size r × c, the degrees
of freedom are (r − 1) × (c − 1), where r and c represent the number of rows
and columns, respectively.

0.5 N-Dimensional random vectors

Let (X1, · · · , Xn be a random vector, then, if X1, · · · , Xn are PMFs, the PMF of the
vector is described by

pX1,··· ,Xn(x1, · · · , xn) = P[X1 = x1, · · · , Xn = xn] (160)

With ∑
x1

· · ·
∑
xn

pX1,··· ,Xn(x1, · · · , xn) = 1 (161)
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pX1,··· ,Xn ≥ 0 (162)

If X1, · · · , Xn are PDFs, the PDF of the vector is described by

fX1,··· ,Xn(x1, · · · , xn) (163)

with ∫ ∞

−∞
· · ·
∫ ∞

−∞
fX1,··· ,Xn(x1, · · · , xn)dx1, · · · , dxn = 1 (164)

The CMF would be described by

FX1,··· ,Xn(x1, · · · , xn) = P[X1 ≤ x1, · · · , Xn ≤ xn] (165)

=

∫ x1

−∞
· · ·
∫ xn

−∞
fX1,··· ,Xn(s1, · · · , sn)ds1, · · · , dsn

(166)
And fx1,...,xn = ∂n

∂x1...∂xn
FX1,··· ,Xn

0.6 Mean Value Theorem

The Mean Value Theorem (MVT) is formally stated as follows: Let f be a function
that satisfies both of the following conditions:

1. f is continuous on the closed interval [a, b].

2. f is differentiable on the open interval (a, b).

Then, there exists at least one point c in (a, b) such that

f ′(c) =
f(b)− f(a)

b− a
. (167)

This theorem essentially states that there is at least one point on the graph of f where
the tangent is parallel to the secant line connecting (a, f(a)) and (b, f(b)).

0.7 Borel σ-Algebra

The Borel σ-algebra serves as the bridge between topological and measurable spaces.
It is defined on any topological space but is most commonly associated with Rn, the
n-dimensional Euclidean space. For simplicity, we focus on R.
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What is σ Algebra

A σ-algebra is a collection of subsets of a given set, satisfying certain properties that
make it suitable for the development of measure theory and probability theory. Let X
be a set, which could represent anything from a set of real numbers R to any abstract
space. A σ-algebra F on X is a collection of subsets of X that includes X itself and
is closed under complementation and countable unions and intersections.

Properties: For F to be considered a σ-algebra on X, it must satisfy the following
properties:

1. Non-emptiness: The set X is in F , and consequently, the empty set ∅ is also
in F , since the empty set is the complement of X in X.

∅ ∈ F and X ∈ F . (168)

2. Closure under complementation: If a set A is in F , then so is its comple-
ment Ac = X \ A.

A ∈ F =⇒ Ac ∈ F . (169)

3. Closure under countable unions: If a countable collection of sets A1, A2, . . .
are in F , then their union is also in F .

{Ai}∞i=1 ⊆ F =⇒
∞⋃
i=1

Ai ∈ F . (170)

By De Morgan’s laws (refresher 0.9), closure under countable unions and com-
plementation implies closure under countable intersections:

∞⋂
i=1

Ai ∈ F . (171)

Examples and Intuition

• Power Set: The power set of X, denoted by P(X), which contains all possible
subsets of X, is a σ-algebra. It is the largest possible σ-algebra on X.

• Trivial σ-Algebra: The smallest σ-algebra on X contains only the empty set
and the set X itself, {∅, X}. It represents the minimal structure that satisfies
the σ-algebra properties.
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Significance in Mathematics

The concept of a σ-algebra is foundational in measure theory, where it is used to define
measurable spaces (X,F) as a precursor to introducing measures on X. In probability
theory, σ-algebras underlie the formal definition of probability spaces, enabling the
rigorous treatment of events and their probabilities. By specifying which subsets of X
are measurable (i.e., those in F), it becomes possible to assign sizes or probabilities
in a consistent manner.

Construction of Borel σ-Algebra

To construct the Borel σ-algebra B(R), we start with a base, which is a collection of
open intervals (a, b) where a, b ∈ R and a < b. The Borel σ-algebra is the smallest
σ-algebra containing this base. Formally, it is the intersection of all σ-algebras that
contain the open intervals.

Generators of B(R) Besides open intervals, B(R) can also be generated by:

• Closed intervals [a, b].

• Open sets in R.

• Closed sets in R.

• Half-open intervals (a, b] and [a, b).

.
Properties and Operations
B(R) possesses several key properties inherent to σ-algebras:

1. Closure under complementation: If A ∈ B(R), then its complement Ac ∈
B(R).

2. Closure under countable unions and intersections: If {Ai}∞i=1 are in
B(R), then

⋃∞
i=1Ai ∈ B(R) and

⋂∞
i=1Ai ∈ B(R).

Role in Measure Theory

In measure theory, the Borel σ-algebra is essential for defining Borel measures, which
are measures defined on B(R). The Lebesgue measure, a fundamental example, as-
signs "length" to sets in B(R).

.
Lebesgue Measure on B(R)
The Lebesgue measure m is defined such that for any interval [a, b], m([a, b]) =

b − a. This measure is then extended to all sets in B(R) through the process of
completion.
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Significance in Probability Theory

In probability theory, the Borel σ-algebra underlies the formal definition of continuous
random variables. A continuous random variable X : Ω → R is such that for every
Borel set B, the preimage X−1(B) is in the σ-algebra of the sample space Ω, ensuring
that probabilities can be assigned to events involving X.

Measurability of Functions and Borel Sets
The concept of measurability plays an important role in determining the properties

of functions within the realm of probability theory. Specifically, functions g : R → R
and h : R → R are considered measurable if, for any Borel set B in R, their pre-images
g−1(B) and h−1(B) are also Borel sets. This property is crucial because it ensures that
operations involving these functions, such as the transformation of random variables,
preserve the structure necessary for applying probabilistic models.

Implications for Continuous Random Variables
When g and h are measurable, this implies that transformations of continuous

random variables through these functions also result in sets that are measurable
within the Borel σ-algebra. For example, if X is a continuous random variable and
g(X) represents a transformation of X, the measurability of g ensures that the event
g(X) ∈ C, where C is a Borel set, corresponds to a measurable event in the original
probability space. This compatibility is fundamental for defining the distribution and
properties of transformed random variables in a rigorous manner.

Rigorous Treatment of Probability
This framework allows for the rigorous definition and analysis of events, enabling

the calculation of probabilities and expectations for a wide range of scenarios involv-
ing continuous random variables and their transformations. The measurability of
functions g and h thus extends the reach of probabilistic analysis by ensuring that
even complex transformations of random variables can be accommodated within the
established probabilistic framework.

Expectation and Integration
The expectation of a continuous random variable, as well as probabilities of events

defined by it, are computed using integrals with respect to the Lebesgue measure on
B(R), allowing for a rigorous treatment of probability. The measurability of functions
g and h, ensuring their pre-images under Borel sets remain Borel sets, underpins the
mathematical foundation necessary for these integrations, thereby reinforcing the
coherence and integrity of probabilistic analysis.

0.8 Pre-Images

The concept of a pre-image is fundamental in the study of functions, topology, mea-
sure theory, and probability theory. It provides a way to analyze and understand
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how functions map elements from one set to another, especially in contexts where the
structure of sets and their elements’ relationships are crucial.

Definition of Pre-images

Given a function f : X → Y , where X and Y are sets, the pre-image (or inverse
image) of a subset B ⊆ Y under f is defined as the set of all elements in X that f
maps into B. Formally, the pre-image of B under f is denoted and defined as:

f−1(B) = {x ∈ X | f(x) ∈ B}. (172)

Key Points:

• The pre-image f−1(B) is a subset of X.

• The notation f−1 does not necessarily imply that f is invertible. Even non-
bijective (non-invertible) functions have pre-images for sets.

Properties of Pre-images

Pre-images exhibit several important properties that are pivotal in various branches
of mathematics:

1. Pre-images and Set Operations: For any function f : X → Y , and subsets
A,B ⊆ Y , the following properties hold:

• f−1(A ∪B) = f−1(A) ∪ f−1(B)

• f−1(A ∩B) = f−1(A) ∩ f−1(B)

• f−1(Ac) = (f−1(A))
c

These properties illustrate how pre-images interact with union, intersection, and
complement operations, reflecting the structural preservation of set operations
through the function f .

2. Pre-images and Empty Set: The pre-image of an empty set under any
function is always the empty set in X:

f−1(∅) = ∅. (173)
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Significance in Measure Theory and Probability

In measure theory and probability theory, the concept of pre-images is crucial for
defining measurable functions and setting up the foundational framework for these
disciplines:

• A function f : X → Y between measurable spaces is measurable if the pre-
image of every measurable set in Y is a measurable set in X. This property
ensures that measure and probability can be appropriately applied to the func-
tion’s outcomes.

• In probability theory, the measurability of a random variable, viewed as a func-
tion from a sample space to the real numbers, is essential for defining events
and computing probabilities, expectations, and variances.

0.9 De Morgan’s Laws

De Morgan’s laws provide a way to simplify complex logical statements (not covered)
or set expressions. They are presented in two parts, each illustrating the relationship
between union and intersection through complementation.

De Morgan’s Laws in Set Theory

Given two sets A and B, De Morgan’s laws state:

1. The complement of the union of A and B is equal to the intersection of their
complements:

(A ∪B)c = Ac ∩Bc. (174)

2. The complement of the intersection of A and B is equal to the union of their
complements:

(A ∩B)c = Ac ∪Bc. (175)

These laws can be extended to any finite or countable number of sets.

0.10 Generalized Inverse

Given a random variable X with its CDF denoted as FX(x), the usual inverse, F−1
X (y),

is defined for values of y where FX(x) is strictly increasing and continuous. The
generalized inverse caters to situations where FX(x) may not have these properties.
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Definition

The generalized inverse of FX , denoted as F−1
X (y), is defined for any y ∈ [0, 1] as:

F−1
X (y) = inf{x ∈ R : FX(x) ≥ y} (176)

where inf represents the infimum, or the greatest lower bound of the set. This def-
inition ensures that the generalized inverse exists even when FX(x) is not strictly
increasing or when there are jumps in the CDF due to discontinuities.

Transformation to Uniform

A fundamental result in probability theory states that if X is a random variable with
CDF FX , then Y = FX(X) is uniformly distributed on the interval [0, 1]. This holds
true even when using the generalized inverse for non-strictly increasing CDFs.

Simulation of Random Variables

The generalized inverse is instrumental in the simulation of random variables. Given a
random variable U ∼ Unif(0, 1), a random variable X with CDF FX can be simulated
as X = F−1

X (U).

0.11 Beyond Mean Squared Error (MSE)

Mean Absolute Deviation (MAD)

The Mean Absolute Deviation (MAD) of an estimator is defined as the expected value
of the absolute differences between the estimator and the parameter it estimates. For
an estimator θ̂ estimating the parameter θ, the MAD is given by:

MAD(θ̂) = E[|θ̂ − θ|].

Unlike MSE, MAD is not as sensitive to large errors because it does not square the
differences. This can make MAD a more robust measure of accuracy in the presence
of outliers.

Root Mean Squared Error (RMSE)

Although closely related to MSE, the RMSE is often considered separately due to its
interpretability, as it is in the same units as the data. It is defined as the square root
of MSE:

RMSE(θ̂) =
√
E[(θ̂ − θ)2].
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Bias

The bias of an estimator is a measure of systematic error, defined as the difference
between the estimator’s expected value and the true value of the parameter:

Bias(θ̂) = E[θ̂]− θ.

Median Unbiased Estimators

An estimator is median unbiased if, for all parameter values, the median of the dis-
tribution of the estimator is equal to the true parameter value:

P(θ̂ ≤ θ) = P(θ̂ ≥ θ) = 0.5.

Robustness

An estimator is said to be robust if its performance (in terms of bias and variance)
is not significantly affected by deviations from model assumptions. Although not
quantifiable in a single metric, robustness is a desirable property in estimators used
in real-world data analysis.

0.12 Fisher Information Conditions

To utilize Fisher Information I(θ) effectively, the following conditions must be met:

1. Differentiability: f(θ;x) must be differentiable with respect to θ,.

2. Existence and Finiteness of the Second Derivative: The second deriva-
tive of the log-likelihood function with respect to θ must exist and be finite to
define Fisher Information accurately.

3. Regularity Conditions: A series of regularity conditions ensure the validity
of operations involving the likelihood function and its derivatives:

(a) Invariant Support: The support of the probability distribution, or the
set of values that the random variable can assume, should not depend on
the parameter θ.

(b) Exchangeability of Integration and Differentiation: It must be per-
missible to interchange the order of integration (or summation for discrete
variables) and differentiation when computing the expected values of the
likelihood function’s derivatives. This ensures that operations involving
the expectation of the score and its square are valid under the integral
sign.
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(c) Boundedness of Higher-Order Derivatives: Higher-order derivatives
of the log-likelihood function (beyond the second order) should be bounded
in expectation. This condition aids in the expansion and approximation
processes, ensuring that the Fisher Information can be accurately defined
and computed.

0.13 Proof of Fisher Information

The Fisher Information for a single observation X1 and parameter θ can be represented
in two forms.

To prove these representations are equivalent, consider the following steps:
Step 1: The derivative of the log-likelihood function with respect to θ is:

∂

∂θ
ln f(X1; θ) =

1

f(X1; θ)

∂

∂θ
f(X1; θ) (177)

Step 2: The expectation of this derivative, under regularity conditions, is zero:

E
[
∂

∂θ
ln f(X1; θ)

]
= 0 (178)

Step 3: By leveraging regularity conditions that allow differentiation under the
integral sign and knowing that the total derivative of a probability density function
with respect to its parameter integrates to zero, we can show:

E

[(
∂

∂θ
ln f(X1; θ)

)2
]
= −E

[
∂2

∂θ2
ln f(X1; θ)

]
(179)

This establishes the equivalence between the two forms of the Fisher Information,
highlighting its role in quantifying the sensitivity of the likelihood function to changes
in the parameter θ.

0.14 Usefulness of the log-likelihood function

The use of the logarithm in MLE offers significant advantages:

1. Simplification: Transforming the product into a sum through the logarithm
makes differentiation with respect to θ simpler. This transformation facilitates
the process of finding the maximum likelihood estimate θ̂.

2. Concavity: The log-likelihood function often turns out to be concave in θ,
making the maximization process straightforward. Optimization techniques
perform more reliably when applied to concave functions, ensuring a single
global maximum.
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3. Interpretability: The log transformation can enhance the interpretability, es-
pecially when comparing the influence of different data points or understanding
the role of the parameter θ.

0.15 Proof of MLE Theorem

According to the Fisher-Neyman factorization theorem, the likelihood function L(θ;x)
for a parameter θ based on data X1, . . . , Xn can be factorized as:

L(θ;x) = ν(t, θ) ·W (X1, . . . , Xn)

where:

• ν is a function that depends on the sample only through the statistic t =
T (X1, . . . , Xn) and the parameter θ,

• W is a function of the data that does not depend on θ.

Since T (X1, . . . , Xn) is a sufficient statistic, it captures all the information in the
sample about θ that is available from the likelihood function. When maximizing the
likelihood function for estimation, the function W (X1, . . . , Xn) does not influence the
estimation because it does not depend on θ. Therefore, the maximization problem
reduces to:

θ̂ = argmax
θ

ν(t, θ)

This shows that the estimation of θ depends only on t = T (X1, . . . , Xn).
If the MLE θ̂ is unique, it implies that the maximization of ν(t, θ) with respect

to θ leads to a single solution for each value of T (x), denoted as f(T (x)). Therefore,
the unique MLE θ̂ can be expressed as:

θ̂ = f(T (X1, . . . , Xn))

where f is a function that maps the sufficient statistic to the parameter space.
Thus, the unique MLE of θ, if it exists, is a function of the sufficient statis-

tic T (X1, . . . , Xn), encapsulating all necessary information for parameter estimation
within T (X1, . . . , Xn).

0.16 Logit and Probit

Logit and probit models are statistical approaches used to model binary outcome
variables in the framework of generalized linear models (GLM). These models are
particularly suited for categorical outcomes that are binary, typically represented as
0 and 1.
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Logit Model

The logit model, also known as logistic regression, models the probability p that
Y = 1 given predictors X1, X2, . . . , Xk as follows:

log

(
p

1− p

)
= β0 + β1X1 + β2X2 + · · ·+ βkXk

where:

• p is the probability of the dependent variable being a specific case (often coded
as 1).

• p
1−p

is the odds ratio, representing the odds that an outcome occurs, given the
predictors, relative to it not occurring.

• β0, β1, . . . , βk are the coefficients that the model aims to estimate.

Probit Model

The probit model is similar to the logit model but uses the cumulative distribution
function (CDF) of the standard normal distribution to link the predictors to the
outcome:

Φ−1(p) = β0 + β1X1 + β2X2 + · · ·+ βkXk

where Φ−1 is the quantile function (inverse of the CDF) of the standard normal
distribution.

Differences and Similarities

• Link Function: The main difference between the two models lies in the link
function used. The logit model uses the logistic function, while the probit model
uses the normal CDF.

• Interpretation: In both models, the coefficients β represent the change in the
log-odds (logit) or z-score (probit) of the outcome for a one-unit change in the
predictor. The specific scale and interpretation of these changes differ due to
the different link functions used.

• Applications: Logit models are commonly used across various fields due to
their straightforward interpretation (odds ratios). Probit models may be pre-
ferred when assumptions about the underlying distribution of the error terms
are normative.
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0.17 Uniform Convergence of the Log-Likelihood Function

Uniform convergence of the log-likelihood function, logL(θ;X), towards its expecta-
tion means that the convergence

sup
θ∈Θ

|logLn(θ)− E[logLn(θ)]| → 0 as n → ∞

holds for all θ in the parameter space Θ. Here, logLn(θ) represents the log-likelihood
function based on a sample of size n, and E[logLn(θ)] is its expected value under the
true parameter.

0.18 Proof of the Simple Form of Bayes’ Theorem

To derive the simple form of Bayes’ Theorem, we start with the definition of condi-
tional probability and use the law of total probability. Bayes’ Theorem allows us to
update our prior beliefs based on new evidence.

Definitions and Setup

• Let A and B be two events within a probability space.

• P(A | B) is the probability of event A given that B has occurred.

• P(B | A) is the probability of event B given that A has occurred.

• P(A) and P(B) are the probabilities of A and B occurring independently.

Proof

1. Start with the Definition of Conditional Probability:

P(A | B) =
P(A ∩B)

P(B)

This formula states that the probability of A given B is the probability of both
A and B occurring divided by the probability of B occurring.

2. Express P(A ∩B) in Terms of P(B | A):

P(A ∩B) = P(B | A)P(A)

Here, we use the definition of conditional probability again, but in reverse. The
probability of A and B occurring together is the probability of B occurring
given A times the probability of A occurring.
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3. Substitute P(A ∩B) Back into the Conditional Probability:

P(A | B) =
P(B | A)P(A)

P(B)

This step substitutes the expression from step 2 into the conditional probability
formula from step 1, yielding the simple form of Bayes’ Theorem.

This theorem is fundamentally important in Bayesian statistics as it provides a
mathematical basis for updating beliefs in light of new evidence.
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