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COMPLEXITY THEORY 
 
We want to classify optimization problems into complexity classes based on how difficult it 
is to solve them. 
We want to put some order in the computational challenges that we want to solve. 
Depending on how the optimization problems are structured, they may be easy to solve or 
hard to solve, in which case you have to accept a sub-optimal solution. 
 
Halting problem 
Can we decide whether a program 𝑃 halts on input 𝑖 by inspection rather than RUNNING 
𝑃(𝑖) ? 
Is there a program ℎ𝑎𝑙𝑡(𝑃, 𝑖) (which takes as input a code 𝑃 and the input to that code (𝑖)), 
such that  
     true if 𝑃(𝑖) halts   

ℎ𝑎𝑙𝑡(𝑃, 𝑖) = { 
  false otherwise 

Supposing that the program halt exists, we can use it to write a function "trouble" that takes 
as an input the string "𝑠". 
 function trouble(string s) 
  if halt(s,s) → if halt outputs true, it loops forever 
   loop forever 
  else   → if halt outputs false, it returns true 
   return true 
What happens if we run trouble(trouble)? 

1. Case 1: Program trouble halts on input trouble. Since we assume that the program 
halt is correct, halt returns true on input trouble,trouble. Hence, program trouble loops 
forever on input trouble → contradiction. 

2. Case 2: Program trouble loops forever on input trouble. Hence, by the correctness of 
the halt program, halt returns false on input trouble,trouble. Hence, program trouble 
halts at input trouble → contradiction. 

 
We are building a function such that, by construction, if it is going to halt, it is also going to 
loop forever → syntactically it is a perfectly correct program, but it leads to contradiction. The 
result of this contradiction is that the program Halt cannot exist. 
 
The problem of halting cannot be solved → not all problems can be solved. 

COMPLEXITY (problem) = AMOUNT of RESOURCES consumed by SOLUTION 
- amount → # elementary operations. Asymptotic scaling. Worst case bound. 
- resources → Time, space, and energy. 
- solution → best algorithm. 

 
 
 

Other 2 problems: 
- Multiplication → it can be done in a polynomial number of steps 𝑂(𝑛!) → easy to 

solve. Best known algorithm (FFT)=𝑂(𝑛 𝑙𝑜𝑔 𝑛 𝑙𝑜𝑔𝑙𝑜𝑔 𝑛) 



 

 

- Factorization → finding the 2 prime factors that give a certain number → Naive: 
𝑂(𝑛! ⋅ 2!/#) → hard to solve. Best known algorithm (GNFS)=𝑂(𝑒𝑥𝑝 (($%

&
𝑛)'/((

𝑙𝑜𝑔 𝑛)!/()). 
Can we classify these types of behaviors? 
 
Time complexity of an algorithm 
Worst case time complexity 𝑇(𝑛) → running time that the 
algorithm takes to solve the worst possible instance of a 
problem. 

𝑇(𝑛) = 𝑚𝑎𝑥
|*|+#

𝑡(𝑥) 

where 𝑡(𝑥) is the algorithm’s running time for input data 𝑥 
(in arbitrary units), and the maximum is taken over all 
problem instances of size 𝑛. 
The worst-case time is an upper bound for the 
observable running time. 
 
Example of a NON-TRIVIAL PROBLEM that 
can be solved in POLYNOMIAL TIME 
MINIMUM SPANNING TREE (MST) 
Def. A spanning tree of 𝐺 is a subgraph 𝑇	that is: 

- connected 
- acyclic 
- includes all the vertices → spanning graph. 

INPUT: connected, undirected graph 𝐺 with positive edge weights 
OUTPUT: a minimum weight spanning tree 
Find a subgraph that connects all vertices (spanning) in the graph (for example a spanning 
subgraph) and whose edges have minimum total weight (to each edge we associate a 
weight 𝑤,,. which is a positive quantity). 
The weight is some cost associated to an edge. Given a graph that has all these weights, I 
want to find a subgraph that connects all the vertices 
such that the sum of the weights is minimized. 

𝑚𝑖𝑛
/
<
0∈/

𝑊0 

 
Observations: 

- the subgraph is going to be a tree 
- the subgraph is not going to have a cycle → having loops add cost without adding 

reachability → has to be a tree. 
 
Cut property 
Def. A cut in a graph is a partition of its vertices into two (non-empty) sets. Cut = edges that 
connect the two sets. 
Def. A crossing edge connects a vertex in one set with a vertex in the other. 
Theorem (the cut property) 
Given any cut, the crossing edge of minimal weight is in the MST. 



 

 

Lemma: Let 𝑈 ⊂ 𝑉 be a subset of the vertices of 𝐺 = (𝑉, 𝐸), and let 𝑒 be the edge with the 
smallest weight of all edges connecting 𝑈 and 𝑉 − 𝑈. Then 𝑒 is part of the MST. 
We imagine seperating the graph in two parts (𝑈 and 𝑉). Among all the edges that connect 
the two parts, the one that has minimum weight must belong to this minimum spanning tree. 
Proof (by contradiction) 
Suppose 𝑇 is an MST not containing 𝑒. Let 𝑒 = (𝑢, 𝑣), with 𝑢 ∈ 𝑈 and 𝑣 ∈ 𝑉 − 𝑢. Then, 
because 𝑇 is a spanning tree, it contains a unique path from 𝑢 to 𝑣 that together with 𝑒 forms 
a cycle in 𝐺. 
This path must include another edge 𝑓 connecting 𝑈 and 𝑉 − 𝑈. Now 𝑇 + 𝑒 − 𝑓 is another 
spanning tree with less total weight than 𝑇 → 𝑇 was not an MST. 
 
 
Other way: 
Suppose min-weight crossing edge 𝑒 is not in the MST. 

- adding 𝑒 to the MST creates a cycle 
- some other edge 𝑓 in the cycle must be a crossing 

edge 
- removing 𝑓 and adding 𝑒 is also a spanning tree 
- since weight of 𝑒 is less than the weight of 𝑓, that 

spanning tree has lower weight 
- contradiction! 

 
This lemma lets an MST grow edge by edge. For all the starting points you obtain the same 
graph. 
 
Greedy MST algorithm demo 

1. Start with all edges colored gray 
2. Find cut with no black crossing edges; color its min-weight edge black 
3. Repeat until 𝑣 − 1 edges are colored black 

 
Efficient design 
Proposition: the greedy algorithm computes the MST. 
Efficient implementations: key steps: 

1. How do we choose the cut? 
2. How do we find the min-weight edge? 

Two examples: 
 
 
Prim’s algorithm 
PRIM(G) 
Input: weighted graph 𝐺(𝑉, 𝐸) 



 

 

Output: minimum spanning tree 
 begin 
 Let 𝑇 be a single vertex from 𝐺 

 while 𝑇 has less than 𝑛 vertices → continue until you 
reach all vertices 

 find the minimum edge connecting 𝑇 to 𝐺 − 𝑇 
 add it to 𝑇 
 end 
end 
 
Computational cost: 𝑇(𝑛) = 𝑂(𝑛! 𝑙𝑜𝑔 𝑛). Solvable in Polynomial time, class 𝑃. 

1. Start with vertex 0 and greedly grow tree 𝑇 
2. Add to 𝑇 the min weight edge with exactly one endpoint in 𝑇 
3. Repeat until 𝑣 − 1 edges are left. 

By using just local information we obtain the best possible spanning tree (global optimum). 
To be computationally efficient: to obtain an optimal result by local moves. 
 
Kruskal’s algorithm 
Consider edges in ascending order of weight. 
Add the next edge to tree 𝑇 unless doing so would create a cycle. 
Suppose you have already chosen some edges. Among the remaining edges, you are going 
to have an edge of minimum weight (that does not have to be connected to the previous 
one), but for sure it should not create a cycle. You would eventually end up with a minimum 
spanning tree. 
At the beginning, to put the edges in ascending order of weight, you have to run a sorting 
algorithm (order 𝑛 𝑙𝑜𝑔 𝑛 steps) 
 
Prim vs Kruskal: visualization 
 
 

 
 
 
 
 
 



 

 

TRAVELING SALESMAN PROBLEM (TSP) 
We have a graph that contains only the edges that I will select (it does not have all the 
possible edges). Each edge has a weight 𝑑,,. (positive).  
We want to find a cycle of minimum weight that connects all vertices. The cycle can be 
unique (TSP) or there could be multiple cycles. 
For the TSP: the only way to find this path is by exploring all possible alternatives → factorial 
number , more than exponential. It can be solved, but there is no algorithm for it. 
Given an 𝑛 × 𝑛 distance matrix with elements 𝑑,,. ≥ 0, find a cyclic permutation 𝜋: [1	. . . 𝑛] →
[1	. . . 𝑛] that minimizes 

𝑐#(𝜋) =<
#

,+'

𝑑,𝜋(𝑖) 

DECISION PROBLEMS: problems whose solution is either “yes” or “no” 
We can turn any optimization problem into a decision problem by adding a bound B to the 
instance. 
 
MST (decision): Given a weighted graph 𝐺 = (𝑉, 𝐸) with nonnegative weights and a number 
𝐵 ≥ 0, does 𝐺 contain a spanning tree 𝑇 with total weight ≤ 𝐵? 
Instead of looking for a minimum weight, we ask ourselves if there exists a tree whose 
weight is below a given level. The answer is either "yes" or "no". 
Running the algorithm multiple times and changing 𝐵 we find the minimum (equivalent to the 
optimization problem).  
If you can answer " yes" or "no” in polynomial time, we can also find the optimal result in 
polynomial time. 
 
TSP (decision): Given an 𝑛 × 𝑛 distance matrix with elements 𝑑,,. ≥ 0 and a number 𝐵 ≥ 0, 
is there a tour 𝜋 with length ≤ 𝐵? 
 
Examples of problems that can be solved easily → called P because they can be solved in 
polynomial time  (solved by an algorithm whose running time is bounded by a polynomial). 
Example: KÖNISBERG PROBLEM 
 
THEOREM (Euler 1736) 
A connected graph 𝐺(𝑉, 𝐸) contains an Eulerian circuit if and only if the degree of every 
vertex is even.  
A cycle that traverses each edge of a graph exactly once is called an Eulerian cycle (you 
have to go back to the initial point). 
This is also a polynomial algorithm. You just need to check the degree of the nodes.  
It is an 𝑂(𝑛!) algorithm → in the worst case the nodes have degree of 𝑂(𝑛). 
 
Intractable itineraries 
A cycle that traverses each vertex of a graph exactly once is called a HAMILTONIAN 
CYCLE. 
No insight available. Exhaustive search seems to be unavoidable. 
This problem does not belong to the class P 
 
 



 

 

SATISFIABILITY PROBLEM 
A boolean variable 𝑥 can take the value 0 (false) or 1 (true). Boolean variables can be 
combined in CLAUSES using the boolean operators → by using these 3 operators you can 
express any boolean function: 

- NOT ⋅ (negation) → the clause �̄�  is true (=1) if and only if 𝑥 is false (=0) 
- AND ∧ (conjunction) → the clause 𝑥' ∧ 𝑥! is true (𝑥' ∧ 𝑥! = 1) if and only if both 

variables are true: 𝑥' = 1 and 𝑥! = 1. 
- OR ∨ (disjunction) → the clause 𝑥' ∨ 𝑥! is true (𝑥' ∨ 𝑥! = 1) if and only if at least one 

of the variables is true: 𝑥' = 1 or 𝑥! = 1. 
A variable 𝑥 or its negation is called a LITERAL. 
Different clauses can combine to yield complex boolean formulas (consider some set of 
variables written as conjunctions(and operator) or disjunction (or operator)) such as 

𝐹'(𝑥', 𝑥!, 𝑥() = (𝑥' ∨ �̄�! ∨ 𝑥() ∧ (𝑥! ∨ �̄�() ∧ (�̄�' ∨ 𝑥!) ∧ (�̄�' ∨ �̄�() 
- (𝑥' ∨ �̄�! ∨ 𝑥() → clause: just taking the “or” of some variables. 

A formula F is called SATISFIABLE if there is at least one assignment of the variables such 
that the formula is true (F=1). 
The formula evaluates to 1 if and only if all the clauses are satisfied simultaneously (it exists 
a configuration of the 𝑥 variables such that all the clauses are satisfied at the same time) → 
satisfy a list of constraints (clauses) simultaneously. 
The existence of an assignment such that F=1 depends typically on the ratio between the 
number of clauses and the number of variables. It is hard to solve if we have a large number 
of constraints and a few number of variables . 
 
BOOLEAN FORMULA IN CONJUNCTIVE FORM (CNF) 
A set of clauses 𝐶2 combined exclusively with the AND operator: 𝐹 = 𝐶' ∧ 𝐶! ∧	. . .∧ 𝐶3 
Literals in each clause are combined exclusively with the OR operator. 
Satisfiability (SAT) 
Given disjunctive clauses 𝐶', 𝐶!, . . . , 𝐶3 of literals, where a literal is a variable or negated 
variable from the set {𝑥', 𝑥!, . . . , 𝑥#}, is there an assignment of variables that satisfies all 
clauses simultaneously? (F=1) 
K-sat 
Given disjunctive clauses 𝐶', 𝐶!, . . . , 𝐶3 of 𝑘 literals each (all the clauses contain the same 
number of variables), where a literal is a variable or negated variable from the set  
{𝑥', 𝑥!, . . . , 𝑥#}, is there an assignment of variables that satisfies all clauses simultaneously? 

- If 𝑘 ≤ 2, there exists an algorithm that can solve this problem in polynomial time.  
- If 𝑘 ≥ 3, we don't know if such an algorithm exists, but we cannot prove that it exists. 

We cannot use this to construct complexity classes, because we cannot prove that an 
algorithm exists or does not exist. In order to classify problems, we need a mathematical 
construction.  
Idea: given a potential solution, we can check if it satisfies the formula or not by plugging it 
into the equation. This can be done in polynomial time (linear number of operations). 
We first define the classes of problems such that a solution can be verified in polynomial 
time. 
 
 
 
 



 

 

NON-DETERMINISTIC ALGORITHMS (do not exist) 
The definition of the second complexity class involves the concept of a NON-
DETERMINISTIC ALGORITHM, which is like an ordinary algorithm, except that it might use 
one additional, very powerful instruction :  

goto label 1, label 2 
(when it has to make a decision, it takes both decisions) 
The computation branches like a tree into several parallel computations that potentially can 
grow as an exponential function of the time elapsed. 
A non-deterministic algorithm can follow all the branches of a search tree by multiplying the 
number of processors.  
It is a mathematical construction, it does not exist, the computational resources (e.g . 
memory) grow exponentially.  
Checking a potential solution is equivalent to computing just one branch of the tree. 
Saying that a solution can be checked easily is like saying that the problem can be solved by 
a non-deterministic algorithm →  as far as a solution can be checked in polynomial time, the 
problem can also be solved by a non-deterministic algorithm. 
 
COMPLEXITY CLASSES 
DEFINITION 1: A decision problem is an element of the CLASS P if and only if a polynomial 
time algorithm can solve it.  
There exists an algorithm that can solve all instances of a problem (also in the worst case) in 
polynomial time 
Examples : Eulerian circuit , 2- coloring , MST(D) 
 
DEFINITION 2: A decision problem is in the class NP if and only if a nondeterministic 
algorithm can solve it in polynomial time. 
Set of problems for which a solution can be checked in polynomial time. 
 
SATISFIABILITY (F) → CLASS NP 
INPUT: boolean formula 𝐹(𝑥', . . . , 𝑥!) 
OUTPUT: ‘yes’ if 𝐹 is satisfiable, ‘no’ otherwise. Begin 
 for i=1 to n 
 goto both label 1, label 2 
  label 1: xi = true; continue 

label 2: xi = false; continue and 
if 𝐹(𝑥', . . . , 𝑥#) = true then return ‘yes’ else return ‘no’ 

end 
For each variable it checks the two values and then returns ‘yes’ and ‘no’. 
EQUIVALENT DEFINITION 2: : A decision problem is an element of the class NP if and only 
if for every  yes' instance of P there exists a SUCCINCT CERTIFICATE (non-exponential 
proof) that can be verified in polynomial time. (i.e. we can check that a solution is truly a 
solution in polynomial time). 
 



 

 

POLYNOMIAL REDUCTION OF A 
AND B 
Definition: we say a problem A is 
polynomially reducible to a problem B and 
we write A≤B if a polynomial algorithm 
exists for A provided there is a polynomial 
algorithm for B. 
A≤B means A is included in B → if you can 
solve B you can solve A. 
 
Suppose we have an algorithm that can solve problem B ; If I can rewrite problem A as a 
particular instance of problem B, then I can apply the algorithm to it . Transforming problem 
A in this way should take a time which is polynomially bounded, otherwise it would be 
useless.  
Having a polynomial reduction does not alter the final polynomial nature of the solution of the 
problem. 
Example → Hamiltonian cycle is polynomially reducible to TSP(D) by setting distances to 1 
and writing: Hamiltonian cycle ≤ TSP(D). 
If you have an algorithm for TSP, you can use it to solve the Hamiltonian cycle just by setting 
to 1 the weight of all the edges. 
By using the idea of reelection we can establish an equivalence class between problems that 
hide the key of the solvability of all the others. If you solve one of them , you can solve all the 
others.  
 
NP-COMPLETE PROBLEMS (not all empty set) 
Subclass such that all problems in NP and P can be reduced polynomically to problems in 
the NP-complete class.  
Some other polynomial reductions: 

- SAT ≤ 3-SAT 
- 3-COLORING ≤ 3-SAT 
- 3-COLORING ≤ HAMILTONIAN CYCLE 

If you solve 1 problem in this class you can solve everything else. The problems in this class 
are equivalent: they can be reduced into one another. 
No polynomial algorithm that can solve NP-complete problems has been found yet. 
Polynomial reducibility is transitive: 𝑃' ≤ 𝑃! and 𝑃! ≤ 𝑃(. (both mapping takes polynomial 
time → overall polynomial mapping from 𝑃' to 𝑃!).  
From transitivity it follows that each SAT, 3- SAT ,3- Coloring , and Hamiltonian cycles 
reduces toTSP(D) → a polynomial algorithm for TSP(D) implies a polynomial algorithm for all 
these problems. 
 
COOK’S THEOREM (1971): All problems in NP are polynomially reducible to SAT 
(SAT is NP complete → not an empty set) 

∀	𝑃	 ∈ 𝑁𝑃:	𝑃 ≤ 𝑆𝐴𝑇 
Every problem P in NP can be reduced, and therefore represented, as an instance of SAT. P 
is always less (in terms of difficulty) than SAT. 
IMPORTANT IMPLICATION: 

- No problem in NP is harder than SAT, or SAT is among the hardest problems in NP. 



 

 

- A polynomial algorithm for SAT would imply a polynomial algorithm for every problem 
in NP → it would imply P=NP. 

 
DEFINITION OF NP-COMPLETENESS (property of belonging to the class NP-
complete): 
A problem P is called NP complete if 𝑃 ∈ 𝑁𝑃 and 𝑄 ∈ 𝑃 for all 𝑄 ∈ 𝑁𝑃. 
The class of NP-complete problems collects the hardest problems in NP. 
If you show that an NP-complete P problem can be reduced to another problem Q, then Q is 
also an NP-complete (equivalent class) → you have to reduce a problem which is NP-
complete onto another problem to declare that the latter also belongs to the class NP-
complete. 
The other way around is obvious and useless.  
By definition, all problems that are NP-complete can be mapped by all the other problems in 
NP.  
If you are able to map an NP-complete problem to a problem in NP, then the NP problem is 
moved in the NP-complete class, because you have reduced a problem that is NP-complete 
onto it, which means that if you can solve the NP problem you can solve the NP-complete 
problem → you can solve all the other in the class (NP-complete) → the problem should go 
to the NP-complete class. 
 
NP-COMPLETE FAMILY TREE 

Cook was able to show that SAT was NP-
complete. 
By reducing it to 3-SAT, he was able to show 
that 3-SAT was also NP-complete and so on 
so forth → more than 3000 NP-complete 
problems are known. 
 
 
 
 

 
 
COOK-LEVIN THEOREM 
Theorem that showed that  SAT was an NP-complete problem → they were able to show 
that any problem that can be checked in polynomial time can be mapped onto SAT. 
The Boolean satisfiability problem is NP -complete → any problem in NP can be reduced in 
polynomial time by a deterministic Turing machine to the problem of determining whether a 
Boolean formula is satisfiable → for any checkable proof, you can show that there is a SAT 
formula that does that. 
 
COMPOSING REDUCTIONS 
Polynomial time reductions are clearly closed under composition. 
By definition:  if 𝐿' ≤ 𝑝𝐿! and 𝐿! ∈ 𝑃, then 𝐿' ∈ 𝑃 
So, if 𝐿' ≤ 𝑝𝐿! and 𝐿! ≤ 𝑝𝐿(, then we also have 𝐿' ≤ 𝑝𝐿(. 
The usefulness of reduction is that they allow us to establish the relative complexity of 
problems, even when we cannot prove absolute lower bounds → you can say whether 2 



 

 

problems are equivalent up to a polynomial reduction (polynomial transformation = 
transformation in a polynomial number of steps). 
If we show, for some problem A in NP that 𝑆𝐴𝑇 ≤ 𝑝𝐴, it follows that A is also NP-complete 
(because it means that A is even more general than SAT). 
 
INDEPENDENT SET 
Given a graph, a subset 𝐺 = (𝑉, 𝐸) of the vertices is said to be an INDEPENDENT SET, if 
there are no edges (𝑢, 𝑣) for 𝑢, 𝑣 ∈ 𝑋 (there are no edges that connect the two nodes). 
 
The natural algorithmic problem is, given a graph, to find the largest independent set.  
To turn this optimization problem into a decision problem, we define IND as:  

the set of pairs(𝐺, 𝐾), where 𝐺 is a graph, and 𝐾 is an integer, such that 𝐺 contains an 
independent set with 𝐾 or more vertices . 

 
Given a graph 𝐺 and an integer number 𝐾, you ask whether it exists an 
independent set with 𝐾 or more vertices → answer is YES or NO. 
To check a solution: take the node and check if there are some edges. 
Since the size of the problem is of the order of the total number of edges, 
then you have to explore something of the order of the size of the system 
→ Polynomial (linear in the number of edges) → the independent set IND 
belongs to the class NP. 
In the example: {a,d,i,c} independent set, {a,c,j,f,g} maximal independent 
set. 
 
IND is in NP. We want to show it is NP-complete → any instance of 3 SAT can be written as 
a particular independent set problem on a particular graph → find a reduction from 3 SAT to 
independent set. 
Reduction 
We can construct a reduction from 3 SAT to IND. 
A Boolean expression 𝜙 in 3CNF (conjunctive normal form) with m clauses is mapped by the 
reduction to the pair (𝐺,𝑀), where 𝐺  is the graph obtained from 𝜙 as follows: 
𝐺 contains m triangles, one for each clause of 𝜙, with each node representing one of the 

literals (either a variable or its negation) in the clause. 
Additionally, there is an edge between two nodes in different triangles, if they represent 
literals where one is the negation of the other → we connect variables that have the same 
name but one is negated and the other is not. 
 
Example 
(𝑥' ∨ 𝑥! ∨ �̄�() ∧ (𝑥( ∨ �̄�! ∨ �̄�') 

- For each clause I build a graph (triangles) 
- I connect the literals that are opposite 
- If you find an independent set of size m (number of clauses), 

then from the independent set I can read a solution to the 
SAT problem. 

- Given that we put a link between a variable and its negation, 
we will never put them in the same independent set → for the 



 

 

independent set we are only going to choose variables that are different. 
- Check if the clauses are satisfied  
- The particular constructions that allow you to form the equivalent graph are called 

GADGETS . 
Vertex cover: Given a graph, we want to find a set of nodes such that all the edges are 
seen by the nodes. 
Vertex cover: set of vertices that you choose in order to cover all the edges. 
Optimization problem: find the vertex cover with the minimum number of vertices. 
This is an NP problem, because given a vertex cover, we just need to check whether all 
edges have endpoints in this set of vertices. 
 
3-SAT → VERTEX COVER 
Suppose our boolean formula for 3- SAT , 𝜙 , contains m variables and 𝑙 clauses. 
For our vertex cover we will use 𝑘 = 𝑚 + 2𝑙 → we can construct a graph such that if on this 
graph I find a vertex cover of size 𝑚+ 2𝑙, then from the vertex cover I can read out the 
solution to the original SAT problem. 
For each variable in 𝜙 we will use the following variable gadget:  
The variable 𝑥 in a 𝜙 for 3-SAT is replaced by 2 nodes in a graph. 
One node represents the literal 𝑥, while the other represents its 
negation �̄�. 

1. Create a graph in which, for each variable, I create a pair 𝑥 − �̄� connected by an 
edge 

2. for each clause I will create a triangle 
3. connect the literals in the variable gadget. 

For each clause in 𝜙 we will use the clause gadget:  
The 3-SAT clause is represented as a clique of 3 nodes, where each node 
represents a literal in the clause. The clause in the example is: (𝑥 ∨ 𝑦 ∨ 𝑧) 
Connect the literals in the variable gadgets to the matching (that are alike) 
literals in the clause gadgets with an edge. 
 

Example 
𝜙 = (𝑥' ∨ 𝑥! ∨ �̄�() ∧ (�̄�' ∨ �̄�! ∨ 𝑥() ∧ (𝑥' ∨ �̄�! ∨ 𝑥() 

𝑚 = 3 
𝑙 = 3 

vertex set 𝑘 = 3 + 2 ⋅ 3 = 9 
At this point, the reduction is 
complete. We still have to prove 
that this reduction is correct, 
meaning that a vertex cover of 
size 𝑘 = 𝑚 + 2𝑙 exists if and 
only if the given 𝜙 is satisfiable. 
 
Theorem: if you can find a vertex cover of size 𝑘 = 𝑚 + 2𝑙, then the 3- SAT formula is 
satisfiable. 
How to check if it is a solution to the SAT problem? Look at the variable gadget and the 
assignment in the variable gadget. 



 

 

For sure they have to be covered → there is a link for each variable → at least one of the 
two nodes has to be covered. 
At least two nodes in the triangle need to be covered, otherwise the triangle would not be 
covered. 
If I have 𝑙 clauses, I must have 2𝑙  covers that are on the triangles → to reach 𝑚+ 2𝑙 covers 
I must have just one cover for each variable gadget.  
We read the solution from the variable gadget and we check if it is correct.  
We conclude that vertex cover is NP complete. 
 
VERTEX-COVER → CLIQUE 
Finding a vertex-cover in a graph can be mapped into the problem of finding a maximum 
clique in another graph → maximum clique is NP-complete. 
Problem: find the maximum clique in a graph. 
Clique → subset of all the vertices such that every 2 distinct vertices are adjacent. 
 
Proving that P is different from NP is still an open problem 
We have 3 classes: P, NP, and NP-complete based on the notion of equivalence between 
problems: problems are equivalent between the class NP-complete and any problem in NP 
can be mapped onto them → if you solve anything inside the NP-complete class in 
polynomial time then everything would become polynomial.  
This is a rigorous construction for which only the class P is characterized by the fact that you 
are able to prove that a problem can be solved in polynomial time. 
For the rest the definition does not tell you how long it takes to find a solution, it just tells you 
how long it takes to check it.  
The class NP-complete is just another class, that is within the class P, that contains those 
problems that are representative of all the others through polynomial reduction.  
 
We cannot prove that it is impossible to prove NP-complete problems → in practice there is 
no evidence that we can solve them.  
Everybody in computer science believes that P ≠ NP → this means that the NP-complete 
problems, in their worst instances, cannot be solved by any algorithm in polynomial time → 
WORKING ASSUMPTION → no proof for that from a mathematical point of view. 
If P would be equal to NP, then technologies like cryptography would disappear. 
Examples → Decrypt: "Does an encrypted message M correspond to clear text T?" → this 
would be solved in polynomial time. 
Short-Proof-Existence: "Does theorem T have a proof with less than n lines?" → NP-
complete problem → if P=NP mathematics would disappear because we could prove 
theorems in polynomial time. 
 
 
SHORTEST PATH 
How to find the shortest path between two nodes in a graph (without having to look at 
the entire graph) 
It differs from the minimum spanning tree because the shortest path problem refers to a 
starting point and to an endpoint.  
Spanning tree does not specify them, it just tells you how to find the tree that connects all 
vertices with a minimum total weight (distance). 



 

 

 
Shortest path is a problem that belongs to the class P (only for P problems we have 
algorithms). 
We have to consider weighted graphs → the distances have to be positive but they don't 
need to satisfy the triangular inequality, because we may want to incorporate in the weights 
of the graph things other than the distance, like costs, etc. 
 
Shortest path properties 
Property 1: A subpath of a shortest path is itself the shortest path 
Property 2: There is a tree of shortest paths from a starting vertex (source) to all other 
vertices 
They are fundamental to finding an algorithm. 
 
DIJKSTRA’S ALGORITHM 
The distance of a vertex 𝑣 from a vertex 𝑠, 𝑑(𝑣, 𝑠), is the length of a shortest path between 𝑣 
and 𝑠. 
Dijkstra’s algorithm computes the distances of all the vertices from a given start vertex 𝑠 → it 
computes all the shortest path lengths from a given vertex. 
 
 
Assumptions: 

- the graph is connected → the algorithm can only tell you about the shortest path 
within one connected component → you should apply the algorithm to each 
connected component. 

- the edges are undirected 
- the edge weights are non-negative 

We grow a “cloud” of vertices, beginning with 𝑠 (starting point) and eventually covering all 
the vertices (reaching all the vertices through shortest paths). 
We associate to each vertex 𝑣 a variable 𝑑(𝑣) representing the distance of 𝑣 from 𝑠 (the 
source) in the subgraph consisting of the cloud and its adjacent vertices. 
At each step: 

- we add to the could (set of explored vertices) the vertex 𝑢 outside the cloud with the 
smallest distance label, 𝑑(𝑢) → as you grow the cloud, you obtain a new vertex in 
the cloud and the right distance for the vertex, and then you update the label of all 
the vertices that are connected, giving them the correct distance. 

- we update all the labels of the vertices adjacent to 𝑢. 
 
Steps 

1. Assign to every node a tentative distance value (distance from the source): set it to 0 
for our initial (source) node and to infinity for all other nodes. → we do not know it. 
The only correct information we have is the distance of the source from itself. 

2. Set the initial made as current. Mark all the other nodes unvisited. Create a set of all 
the unvisited nodes called the UNVISITED SET.  

3. For the current node, consider all of its unvisited neighbors and calculate their 
tentative distances. Compare the newly calculated tentative distance to the current 
assigned value and assign the smaller one. 



 

 

We update the distance by taking the minimum value between its current value and 
the one you would obtain by going through the link that connects the node with the 
one we are sitting on.  
For example , if the current node A is marked with a distance of 6, and the edge 
connecting it with a neighbor B has length 2, then the distance to B (through A) will 
be 6 + 2 = 8. If B was previously marked with distance greater than 8 then change it 
to 8; otherwise, keep the current value. 

4. When we are done considering all of the neighbors of the current node, mark the 
current node as visited and remove it from the unvisited set. 
A visited node will never be checked again. 

5. If the destination node has been marked visited (when planning a route between two 
specific nodes) or if the smallest tentative distance among the nodes in the unvisited 
set is infinity (when planning a complete traversal; occurs when there is no 
connection between the initial node and remaining unvisited nodes), then stop. The 
algorithm has finished.  

6. Otherwise, select the unvisited node that is marked with the smallest tentative 
distance, set it as the new “current node", and go back to step 3. 

Differences between the shortest-path algorithms and Prim’s algorithm 
In the shortest path algorithm, if you don’t specify the destination node, the algorithm is 
going to run until it exhausts the whole graph and then it will give you a tree of shortest path. 
Differences between this tree and the minimum spanning tree: 

- conceptual difference → the shortest path tree depends on the route, while the 
Prim’s algorithm does not. 

- In Prim’s Algorithm, you start with a vertex, not a specific one, and greedly grow the 
tree. You add to the tree the minimum weight edge with exactly one endpoint in the 
tree. Then repeat until 𝑣 − 1 → there is no update of distances, everything depends 
on the weights. 
The distance of the nodes depends on all possible paths that you could have to 
reach that node and among all these paths select the one of minimal distance 
(weight). 

- Minimum spanning tree → subgraph of minimum total weight 
- Shortest path tree → set of nodes that compose the tree of minimum distance with 

respect to a given source. 
Observations about the running time: Dijkstra’s algorithm runs in 𝑂((𝑛 +𝑚) 𝑙𝑜𝑔 𝑛) time, 
provided that the graph is represented by the adjacency list structure. 
In the running time: 

- n= number of vertices 
- m = number of edges → you have to look at all the vertices connected to the cloud 
- 𝑙𝑜𝑔 𝑛 → you have to look for the minimum distance across all the candidate nodes to 

be connected to the cloud, so you have to sort them. 
The running time can be expressed as 𝑂(𝑚 𝑙𝑜𝑔 𝑛) since the graph is connected (𝑚 > 𝑛). 
 


