
Brought TO YOU BY:

Written by

Alessia Massara

Valentina Benzi

Curated by

Michele Longo

This handout has no intention of substituting University material for what concerns
exams preparation, as this is only additional material that does not grant in any

way a preparation as exhaustive as the ones proposed by the University.
Questa dispensa non ha come scopo quello di sostituire il materiale di

preparazione per gli esami fornito dall’Università, in quanto è pensato come
materiale aggiuntivo che non garantisce una preparazione esaustiva tanto quanto

il materiale consigliato dall’Università.

PYTHON PRACTICE

1 ° YEAR BIEM / BIEF / BIG /
BEMACC

astrabocconi.it
Find more at:

Brought TO YOU BY:

2022-2023 Edition

This handout has no intention of substituting University material for what concerns
exams preparation, as this is only additional material that does not grant in any

way a preparation as exhaustive as the ones proposed by the University.
Questa dispensa non ha come scopo quello di sostituire il materiale di

preparazione per gli esami fornito dall’Università, in quanto è pensato come
materiale aggiuntivo che non garantisce una preparazione esaustiva tanto quanto

il materiale consigliato dall’Università.

astrabocconi.it
Find more at:

Python

What is Programming?

Programming means instructing a machine how to perform a certain task or solve a certain problem.

When a program is developed, its realization cannot be improvised, in fact it requires several phases,

starting from the analysis of the requests that the program must satisfy up to its writing.

To actually be able to provide the necessary instructions, the programmer must possess technical

skills, i.e. he must know the logic of programming and of the specific language, and not technical

ones, such as problem solving and computational thinking.

⇒ The requirements indicate the objectives to be achieved and the functionalities that the program

will have to offer. →Fundamental requirements analysis.

⇒ In the design phase (definition of the Algorithm) the guidelines of the software structure are

defined according to the requirements highlighted in the analysis. → Algorithms are used to

represent the flow of instructions that the program will have to carry out to solve the problem.

⇒Implementation is the actual realization phase of the program: the software solution is realized

through programming.

⇒ The software is tested so that any errors can be resolved through debugging.

Finally the program is executed and used.

What is an algorithm?

The algorithm is a process that allows us to solve a problem through a sequence of codified actions.

Key features of the algorithms:

- finite sequence of instructions;

- procedures must lead to a result;

- physically executable instructions;

- instructions expressed unambiguously.

Algorithms are commonly represented using flowcharts, a graphical notation to intuitively describe

the actions of which the algorithm is composed.

- The oval boxes indicate the start and finish blocks;

- Rhomboids are input/output elements;

- Rectangles are execution elements = represent elementary actions;

- The rhombuses are elements of decision or choice;

- The arrows represent the execution flow of the algorithm.

What’s Python: It’s an interpreted, interactive, object-oriented high-level programming language.

- Interpreted

- Interactive: allows you to write instructions directly on its command prompt, the shell, without

needing to create or modify a source file.

- Object oriented: the solution to a problem is not seen only as a sequence of instructions, but in

terms of objects, their attributes and the actions that these objects can perform.

Other key features of Python are: clarity in its syntax (blocks of statements are delimited only by

indentation) and dynamic typing of variables (since it is sufficient to assign an initial value to a

variable to define its type).

IDLE = Integrated Development and Learning Environment → Python programming environment

that includes:

- the shell: it is used in interactive mode, i.e. it allows you to type and execute single instructions and

immediately see the result;

- the editor: it is used in script mode, i.e. it allows you to create actual programs that can be saved

and executed.

The shell is the Python interpreter: the program that can read the code instructions and execute

them. In case wrong instructions are entered, the interpreter will show an error message.⇒ In the

shell it is therefore possible to do all the desired experiments.

⇒ In the shell it is not possible to cancel what has already been done: if you want to start over from

a clean page you will need to close and reopen the shell (or “Restart Shell”).

⇒ Statements entered in the shell are not stored, they simply produce a result.

The editor, allowing you to save the instructions, is the most suitable for developing programs. ->

Running the program will start the interpreter in script mode: the code will be read and executed

step by step until the program ends.

Python syntax basics:

The syntax of a program is that set of rules that must necessarily be known in order to write a

program.

- Python is not strict on space management. →3+3 equals 3 + 3.

[it is preferable to use spaces to improve readability, although they are not mandatory]

- Each program has a set of keywords, each of which has a specific meaning and cannot be used for

other purposes.

- In Python, you need to enclose strings in single quotes (‘ ‘) or double quotes (“ “).

● If the string contains quotes then it must be enclosed in quotes and vice versa.

● Three quotes or three quotes can be used to enclose strings that span multiple lines.⇒

Often used for a program presentation string.

● It is NOT possible to perform calculations using strings, even if their content is numeric.

● Operators usable with strings: “ + “ for concatenation and “ * “ for repetition.

Comments can be useful as the program becomes more complex, to document the various steps.⇒

They are short notes, which can be inserted in different points of the program and explain what

objectives the instructions to which they refer have. → You can insert them in 2 ways:

1. When they follow a line of code, by preceding them with the symbol #;

2. When they are between different lines of code, in addition to the symbol #, also by inserting them

between triple quotes (or quotation marks).

Escape codes are special commands consisting of a character preceded by a backslash (\), placed in

a string.⇒ These codes are not displayed in the output, but give specific commands:

- \n → wrap the text;

- \t → align text to tab stop;

- \ → wraps the code.

Python contains several built-in functions: the built-in functions (displayed in purple).

The most common built-in function is print = allows you to display an output on the screen.

[ATTENTION! The print function (but in general all functions) are written in lowercase, if they were

written with uppercase (eg: Print or PRINT) an error message would come up.]

Function parameters are always separated by a comma (parameter separator).

The first parameter of the print function is value, which is the value that will be returned as output.

→ One or more values can be entered separated by a comma.

Another parameter is sep= ' ': it indicates which separator must be returned between the various

output texts.⇒ The default separator is space.

The help function displays information about a function, data type, or module. → It can be used

whenever you have doubts about one of these elements.

In addition to the pre-existing functions, Python also provides libraries that make it possible to

expand its potential.⇒ To access the functions of a specific library it is necessary to import it:

Mathematical operators:

[ATTENTION! In Python, numbers follow the Anglo-Saxon notation: “.” for decimals and “,” for

thousands.]

A mathematical expression is a sequence of numbers, mathematical operators and parentheses that

performs a calculation and returns a value (DISCLAIMER! It can contain both numbers and variables

representing numbers).

In mathematical expressions in Python, some rules concerning the precedence of operators and

parentheses are respected:

- operations enclosed in parentheses are performed first,

- Subsequently, when two operators share the same operand, the operator with the highest

precedence is applied first. → Order of operators: exponentiation, multiplication and division,

addition and subtraction.

[While in mathematical notation it is not always necessary to explain operators, in Python it is

always necessary to explain operators, as well as parentheses.]

You are not always satisfied with the appearance of numbers displayed on the screen, especially in

the case of floating point numbers.⇒ you can format them with the format function:

The format function has two arguments:

- the number to be formatted;

- the format specifier:

➔ '.2f' = to round to the second decimal number

➔ ',d' = to insert the thousands separator;

➔ '%' = to format a floating point number as a percentage (you can enter the number of

decimal numbers you want: '.0%'

In Python there are several built-in functions dedicated to mathematical calculations:

- sum function: calculates the sum of a list of elements indicated in square or round brackets

separated by a comma;

- pow function: calculates the power of a number;

- abs function: calculates the absolute value of a number;

- round function: rounds a floating point number to the decimal digit indicated as second parameter;

- max and min function: they return the maximum and minimum value of a series of single

parameters.

In addition to the built-in functions, there are other functions that are part of the Python standard

library.⇒ Some of the additional modules are: statistics (in particular statistics.mean to calculate

the mean of a list of values), math (ex: math.sqrt for the square root) and random, which allows to

generate random numbers (ex: random.random() = decimal random number between 0 and 1,

random.randint(a,b) = integer random number between (a and b included).

The variables

A variable is a name that represents a value in computer memory.⇒ An assignment statement, also

called initialization, is used to create a variable.

Ex: x = 10 where " = " takes the name of assignment operator.

Variables can be used in programming statements to represent the value they reference.

ATTENTION! Variables should never be placed in quotation marks, otherwise it will be considered as

any string and will not indicate the corresponding value.

When writing variables, pay close attention to uppercase and lowercase⇒ Python is case-sensitive =

it distinguishes between lowercase and uppercase characters. (By convention, only lowercase letters

are used when writing variables.)

In particular: THE NAMES OF THE VARIABLES

- must be short and meaningful;

- they must start with a letter or with an underscore (_);

- cannot contain spaces or special characters (#, @, €, $; §);
- cannot consist of Python keywords;

- it is preferable not to use accented characters.

Variables can reference different values during the execution of a program = can be reassigned:

When you assign a value to a variable, it references the value until you assign it a different value. →
Before updating a variable it is essential to initialize it, as otherwise it would generate an error.

Python provides multiple variable assignment (or unpacking): it allows you to act on multiple

variables directly on the same line of code.

Data types

When we use data in a programming language, it is necessary to take into account the type of data

we are using to know what we can do: data management has specific rules.

[→ Some operations can only be performed with certain types of data, while others behave

differently depending on the type of data they deal with.]

⇒ For this reason there is typing: a management of data that varies according to their type. → There

are two types of typing:

- static: the programmer must explicitly declare the type of the variable before using it;

- dynamic (as in Python): it is the interpreter which, based on the value assigned to the variable,

decides its type.

To find out which data type a value belongs to, you can use the type function: it returns the type of

the value that the variable refers to at that moment.

ATTENTION! In Python, currency symbols cannot be written to numeric values.

The numbers must be written in the simplest possible form: only with the decimal point (the

thousands separator can be adjusted by the format function)

Difference between using commas and using the + operator:

- when using the comma in the print function, the different arguments are directly returned

separated by a space

- spaces are not inserted automatically in the chaining and must be managed manually.

ATTENTION! The concatenation operator works only with strings.

When performing a calculation between two operands, the data type of the result depends on the

data type of the operands:

- two int operands -> int result;

- two operands float -> result float;

- one int and one float operand -> result float.⇒ expressions with mixed data types.

It is possible, using functions, to convert a value from one data type to another:

- int function: converts a given value into an integer;

● It can also be used for decimal numbers, but it does not round the decimal part but

truncates it.

- float function: converts integers and strings to floating point numbers;

- str function: convert the value of its argument to a string. → It can be useful when you want to

display a result composed of numbers and strings on the screen.

● If the conversion is impossible (because it is meaningless or not technically feasible) an error

message appears.

Input function⇒ Requests the user to enter data. → Once the user has typed in a value, the

displayed output will be a string.

Sequence structure and decision structure:

Sequential structure = set of instructions that are executed in the order in which they are entered.

Decision structure = performs a certain action only when specific conditions are met.

There are different types of decision making

structures:

- simple decision structure: single alternative

execution;

- alternative execution: double alternative

execution;

- serial condition.

Decision structures are implemented through the use of conditional instructions = instructions that

allow you to divert the sequential flow of a program by introducing choices.

⇒ The conditional institutions are if, else and elif.

The if statement (single alternative)

- Header (if clause)

- Body (indented statement block): contains the statements

to be executed if the condition is true;

- If the condition is false, the statement block is skipped and

the program continues.

Boolean expressions → the conditions of the if statement are implemented by boolean expressions

= expressions that can be either true or false.

⇒ Conditions use comparison operators and return True or False:

Important! Comparison operators apply only to variables and values of the same type.

The if-else statement

The if – else statement allows you to write a double alternative decision structure, which provides

two possible execution paths, depending on whether the condition is true or false:

The syntax of the function provides:

- that the if and else conditions end with a colon;

- that the if clause and the else clause are indent-aligned;

- that the blocks of statements following the if clause and the else clause are indented uniformly.

The nested conditions => if -else and if – elif – else

If-else statements:

It can be used to test two conditions (with three possible outputs). →The syntax has two if clauses

and two else clauses.

Instructions if – elif -else: it is used in case of conditions in series, that is when there are numerous

cases and numerous possible exits.

With the elif statement it is possible to specify nested if-else blocks in a compact and readable way: it

allows you to specify a block of statements for each of the possible cases.

Logical or Boolean operators = allow you to create complex boolean expressions, increasing the

potential of conditional constructs:

If statement with in⇒ The if function test can also compare against a list of values or a range:

- the in keyword is required to use a list of values;

- to use a range of values you need the range function:

● The range function returns an object that produces a sequence of integers, between the

minimum value (included) and the maximum value (excluded) with increments

corresponding to steps.

The pass statement⇒is a null operation: nothing happens when it is executed.

Iterative constructs

Iteration is the ability to repeatedly execute the same block of instructions. → Instead of duplicating

the same sequence of instructions several times, in programming languages there is precisely the

possibility of writing the operating code only once and inserting it in an iterative structure, also

known as a cycle or loop.

Cycles can be:

- controlled by a condition⇒ use a true/false condition to control the number of repetitions.

→ while loop: repetition occurs as long as the condition is valid.

- controlled by a counter⇒ the cycle is repeated a specified number of times. → for loop.

The while loop (loops controlled by a condition) → as long as the condition of the loop is true the

block of instructions is executed; when the condition becomes false, the while loop is exited.

The while syntax requires:

- the while clause: it can assume the logical boolean value true or false and the closing colon;

- the block of instructions to be repeated.

A while loop can repeat an

infinite number of times until a

certain condition is met.

It may happen, in both for and

while loops, that you need to

abruptly terminate the loop when certain conditions occur. →
break statement.

Or, when certain conditions occur, it is necessary to move on to the next iteration of the loop. →
continue statement.

When the loop doesn't have an easily definable end⇒ the while loop True = infinite while loop.

⇒ to end the loop while True: you need to add an if that contains the exit condition from the loop,

and the statement executed when the condition of the if statement occurs must be break to exit the

loop at that moment.

The for loop (loops controlled by a counter):

The for loop syntax consists of two parts:

- the for clause with the name of a counter variable, in and a closing colon;

- the block of statements that is executed on each iteration of the loop.

⇒ The counter variable is assigned the first value in the list, the instructions are executed and then

the variable is assigned the

following value and so on.

Functions and exceptions

In Python there are many functions

that are immediately available, the

built-in functions, and many more

are available in the standard library; however, it is also possible to

create customized functions to carry out tasks and operations

according to your needs.

⇒ Custom functions are named blocks of code, which themselves can

contain other functions, and which are executed when explicitly called.

The usefulness of being able to create ad hoc functions for your needs lies not only in the ability to

calculate or perform an action, but also in the possibility of making a very complex program easier to

read. → The advantages of a modular program:

- ability to reuse code

- greater simplicity of the code

- improvement in the test phase.

How to write and define a function in Python:

The first line is the header: it always starts with the keyword def followed by the function name and

two parentheses and a colon. → Between the round brackets are the parameters that specify which

arguments will be passed to the function: there are mandatory or optional parameters.

The subsequent lines of the definition constitute the body: it contains all the instructions necessary

to carry out the requested operation. → The body must end with the return statement when it is

necessary for the function to return a value (without the return the result is not stored).

The function name must respect some rules:

- the first character must be a letter or an underscore;

- keywords or spaces cannot be used;

- after the first letter you can use letters (upper and lower), numbers and underscores;

- for clarity, the name should make it clear what operation the function performs.

Every time you want to execute the function you need to call it: new_function()⇒ specifying the

parameters if required.

EXAMPLES:

Arguments of functions⇒ Functions can have arguments: it is possible to pass inputs to the

function.

To make it possible to pass data to the functions, parameters are used, i.e. variables that must be

specified in round brackets.

You can set mandatory parameters and optional parameters:

- it is necessary to specify all the mandatory parameters first, followed by the optional ones;

- the default value that the parameter must assume if it is not specified when the function is

called must be indicated in the optional parameters.

Productive functions and void functions: the difference

➔ A productive function is a group of statements that perform a specific task and, when

finished, return a value to the statement that called it.

❖ Productive functions, therefore always end with the return statement.

➔ A void function is a function that performs a specific task, but returns no value when it

terminates and is therefore empty.

Local variables and global variables:

➔ A global variable can be accessed from any statement of a program.

➔ A local variable is accessible only within its context (or scope) and therefore only in the part

of the program in which it was defined = all the instructions that are outside the function

cannot access the variable or use it.

The documentation string (docstring)⇒ insertion of a few lines explaining the operations

performed by the function or, more generally, a comment on the function.

⇒ It is NOT a mandatory operation, but it can be very useful to specify some features of the

function.

The contents of the documentation string are shown in the call tip when calling the function in the

shell.

Functions with loops and conditional expressions⇒ In the body of the functions it is possible to use

loops and conditional expressions to increase the possibilities of carrying out complex operations.

THE EXCEPTIONS⇒ these are events triggered by errors of various kinds: if we expect them to occur,

it is possible to write a code to manage them.

➢ When an exception is not handled it causes an error and the exit from the block of

statements in which it occurs from the program.

There are different types of errors:

- Syntax errors: indicate that there is an error in writing the code. → SyntaxError

➢ The error message indicates where in the code the error is located, but does not specify how

to fix it.

- Runtime errors: indicate that there is an error in the code even if the syntax is correct.

➢ shows an error message (only in the shell) and indicates the code that generates the error

and specifies its cause.

- Semantic errors: occur when the program is executed without producing error messages, but

the results are NOT the correct ones. → They require a re-read of the code or the use of the

debugger for the resolution.

Exception handling⇒ via the try…except statement:

ValueError = inserting text instead of numbers, or decimal numbers;

ZeroDivisionError = inserting a zero in the denominator.

Debugging = research and removal of code errors.⇒ occurs through a process of re-reading the

code, debugging, modifying the code and re-running the program.

➢ There are special tools (e.g. Debugger).

The sequences

Sequences are objects that contain several data that are stored one after the other.

→ There are several types of sequences: lists, strings and tuples.

Sequence features:

- They are iterable objects = I can access them

- They can be mutable, they are only lists (once the sequence has been created I can modify it) or

immutable, they are strings and tuples (they can no longer be modified after creation).

- Index = number that identifies the position of each value.

Operators of sequences:

Strings = sequence of characters (letters, numbers and symbols)

→ Since the string is immutable, the only way to change a string is to create a new string.

Lists = collection of data (called elements) of any type, enclosed in square brackets and separated by

commas.

- Can be assigned to variables;

- An empty list is a list without elements => utility: I could create an empty list because then I might

need to add it inside my program;

- A list can be nested inside another list;

- You can also create a list using the built-in list function.

Tuples (similar to list) = contain elements of any type, separated by commas and enclosed in

parentheses (they are not required).

/→ you can use the built-in tuple function.

Sequence operators and functions: Applicable to strings, lists and tuples.

Indexing = allows you to access the individual elements of a sequence, using the syntax

sequence[index]

- The index of the first element is equal to 0 and that of the last one is equal to the number of

elements minus 1.

Slicing = function that can be used to extract a portion of the sequence.

→ sequence[start_index : end_index : step] = returns all elements of the sequence between the one

with start index (inclusive) and the one with final index (exclude).

Example: (considering the string 'Computer viruses are an urban legend')

If omitted start_index: elements starting from the first.

If omitted end_index: elements up to the last.

If both are omitted: entire sequence.

What are the methods?

Methods = special functions of strings, lists and tuples.

→ function syntax: object.method(argument)

→ String methods

→ Methods of lists

→ Tuple methods

Dictionaries = object that contains a collection of data or elements.

→ Elements consist of two parts: a key and a value.⇒ Keys are unique and can be any immutable

data type. Values ​​can be any mutable or immutable data type.

→ To create a dictionary it is necessary to write the elements separated by commas (,) in braces { }.

Each element consists of a key followed by a colon (:) and a value.

→ Alternatively you can use the dict function, which creates a new dictionary with no elements.

→ Dictionaries are mutable objects.

To extract a value from a dictionary, the key associated with the value is used: dictionary_name

[key].

To add key-value pairs: dictionary_name[key] = value.

Operations with dictionaries:

- in allows you to check the presence of a key

- del removes a key-value pair from a dictionary

- len returns the number of key-value pairs

Dictionary methods:

Traversing dictionaries:

Object-Oriented-Approach: every ‘variable/element’ is actually an object

OOP is based on:

- encapsulation

- inheritance

- polymorphism

★ a class is the family of objects of a certain type, different libraries might have additional

classes of objects ex. student

★ an instance= object is a specific case of a class ex. Anna Bianchi, Li Wang…
★ attributes are the properties of objects ex. Name, ID number, Height…
★ methods are the functions performed with the object ex. give exams, change curriculum

Dir

can be used to view the classes of a module: >>> dir (turtle)

and the list of attributes and methods:

>>> dir (turtle.Turtle())

>>> bob = turtle.Turtle()

>>> dir (bob)

Call tip

to get help while coding, can call tip (Edit ot Ctrl + backslash) after creating an instance

>>> bob.

Create a class

● To create a class you need to give it a name (with first capital letter) and define its attributes

and/or methods. parenthesis are not mandatory

● All instances of the class inherit attributes and methods of the class to which they belong,

indented

● Attributes and methods inherited by individual instances can be assigned in the creation

phase of the instance and/or changed at a later time

>>> class Person:

adding attributes

● They allow to customize each single object of the class (i.e. the instances)

● They can be Python built-in types (i.e.: int, float, list) or other objects

● They can be defined directly in the class (with an assignment, as shown here below), but

they are usually defined with a special method called constructor method

Constructor method __init__

● like all methods, init is a function so it starts with def, but it is not productive

● It is the method that Python search in the class when it has to initialize the state of an object,

if it is not explicit python uses the built in.

● It can include the definition of the attributes and of any other feature and option needed to

the objects of the class, like: call of functions, opening of files, access to databases etc.

● The syntax follows the same rules used when defining a function, with the parameters

(mandatory or optional) that are used to initialize the attributes, specified in parentheses

● There must be at least one parameter – conventionally named self – that represent the

reference to the name of the instance that will be created

we can now create objects of this class that are initialized with the default attributes

assign attributes (variable or constant)

● To access a specific object, we must use the name of the related instance

● To define the value of an attribute we can use:

InstanceName = ClassName(val_1, val_2,…)

(only when the attribute has been defined as a parameter of the constructor method

__init__)

InstanceName.AttributeName = value

(for attributes not defined as parameters. But it can also be used for those attributes defined

as parameters in the __init__ method)

create methods for the class

● They are procedures/functions

● They can return a value thanks to the return statement

● They have at least one parameter: self

● They are invoked with the same notation used for attributes: Methods

InstanceName.MethodName(par_1, par_2,…)

Special method __str__

What if we just use the name of an instance as the argument of a print function?

● The printout will be the result of the special method __str__

● It has no arguments (besides self) and must end with the return statement

Inheritance

● parent class (superclass)

● child class (subclass)

○ inherits all data and methods of the parent class

○ adds more info and methods

○ overwrites methods

Access to files - open

To access a file in Python we use the built-in function open

● It opens a file and returns an object of type file to which is associated the content of the

specific file that has been opened

● If the file cannot be opened, an error is raised

● Opening a file imply the creation of a variable to which the object should be assigned

Reading methods

The content of a file can be read entirely or line by line:

1. The read method reads the contents of the entire file

2. The readline and readlines methods read the content line by line

The modules

All programming languages can be enriched by extensions in order to execute specialized additional

functionalities

● In Python, additional functionalities come as modules: these are files acting as containers,

grouping useful functionalities by the topic they relate to

● Some are part of the basic Python installation, and we already met some examples as math,

random and turtle

● Modules can be organized in libraries or «packages»

● Modules installed by default with Python make up the Python standard library

● There are also many custom modules available for the most diverse purposes

Import

Assuming a module is installed, in order to use it we need to import it into the program's running

session.

Invoking a functionality of a module without having imported it, raise an error message:

The command we need is import, which also allows to import different modules at the same time:

N.B.: importing is valid only for the current session

Dir

The dir command shows the list of the loaded modules (the ones always available in Python, and

those loaded in the current session):

The same command also allows listing the functions and classes offered from a specified module

To list all available modules: >>> help (‘modules’)

1. os

Standard module that provides a set of tools to make possible to interact with the Operating System,

quite useful to inspect and manipulate files and folders. Some of its functions are:

os.listdir([path]) Returns a list with names of files and folders available in the folder specified as

argument

os.path.join(path, filename) Returns the complete path of a file (filename argument) in the specified

folder (path argument)

os.path.isfile(path) Returns True if the path is referring to a file, False otherwise

os.getlogin () Return the name of the current Windows user

os.getcwd() Return the path of the current working directory

os.chdir (path) Change the current working directory to path. (path should be written as a text

string, e.g. ‘C:\\Python’)

os.rename(OldName, NewName) Renames files or directories from OldName to NewName (names

must be strings, including the full path)

2. random

Allows generating random numbers, with some useful functions:

random.random() Returns a random decimal number between 0 and 1

random.randint(min, max) Returns a random integer number between min and max (both inclusive)

random.choice([list]) Returns a random element from the list given as argument

random.randrange(min,max,step) Returns a random integer between min and max (this last

excluded) with an increase of step

example:

In the following script the random module allows to chose randomly a student from a list created

opening the file ‘students.txt’:

3. webbrowser

It is a Web-browser controller that provides a high-level interface to allow displaying Web-based

documents to users.

One of the most relevant functions is:

webbrowser.open(URL, new=0)

Display the web page available at url using the default browser. If new is 0 the url is opened in the

same browser window, if possible. If new is 1 a new browser window is opened, if possible. If new

is 2 a new browser page (“tab”) is opened, if possible

example:

In the following script the wiki function uses the webbrowser module to open in the default browser

the Wikipedia page of the keyword passed as argument when the function is called

Custom modules

Specialized modules, usually intended for niche audiences, that must be installed by the user.

Where to find them?

PyPI - the Python Package Index is the official site collecting and categorizing most of the available

modules There are many other sources offering information and download of modules. For instance

UsefulModules contains a list of the most popular Python modules classified by topic, mainly aimed

at a Python beginners

Installing custom modules

To use a custom module it is necessary to download and install it following the instructions, or

simply running the command pip install modulename from the command line of the operating

system:

● Write cmd in the search box of the Windows menu (in MacOS, open the Terminal

application)

● In the command line, we write pip install modulename

openpyxl module

Non standard Python module for reading and writing Excel files.

Some useful functions:

★ MyNewXLfile = openpyxl.Workbook ()

Creates the instance

★ MyNewXLfile of the class of

objects Excel workbook (Note:

a new empty workbook has

always one single worksheet)

★ MyNewXLfile.save

('MyFile.xlsx')

Save the Excel workbook object

★ MyNewXLfile as MyFile.xlsx on the active path

★ MyNewXLfile.active.title = 'MySheetName'

Rename the active worksheet in MyNewXLfile workbook as MySheetName

★ MyNewXLfile.create_sheet ('MyNewSheet')

