


Algorithm → a procedure for solving a mathematical problem in a finite number of steps
that frequently involves repetition of an operation.
Computational Complexity of a problem → the amount of resources that you need to
invest to find the solution.
In the case of computers: number of elementary operations that you have to perform and
the amount of memory you use while using the best possible algorithm.

The notion of computational complexity is related to the worst case scenario.

TOWER OF HANOI

- transfer the disks from the first needle to the
second needle, using the third as necessary

- you can only move one disk at a time, and could
never put a larger disk on top of a smaller one.

Recursive solution
Definition: = minimum number of moves in order to solve the problem. This is what we𝑆(𝑛)
want to find.
Upper bound:

- we move disks → moves(𝑛 − 1) 𝑆(𝑛 − 1)
- move largest disk → 1 move
- move back the disks → moves(𝑛 − 1) 𝑆(𝑛 − 1)

Overall: 𝑆(𝑛 − 1) + 1 + 𝑆(𝑛 − 1) ⇒ 𝑆(𝑛) ≤ 2𝑆(𝑛 − 1) + 1
Lower bound:

- to move the last disk, the others must be in order on one needle → moves𝑆(𝑛 − 1)
must have been done at least

- moving the last disk → 1 move
- move back the disks on top of the larger one →(𝑛 − 1) 𝑆(𝑛 − 1)

Overall: 𝑆(𝑛 − 1) + 1 + 𝑆(𝑛 − 1) ≥ 2𝑆(𝑛 − 1) + 1
Since the upper and the lower bound are equal: 𝑆(𝑛) = 2𝑆(𝑛 − 1) + 1

Solve the recurrence relation to find a closed form:
1. we guess a solution from small 𝑛
2. we show it is true for some 𝑛 = 𝑛

0

3. we show that it is correct for any assuming it has been shown to be true for values𝑛
between and .𝑛

0
𝑛 − 1

Guess:

𝑆(𝑛) = 2𝑛 − 1
It works for .𝑛 ≤ 6
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Induction: substitute in the recurrence
relation the Ansatz.

- 𝑆(𝑛) = 2𝑆(𝑛 − 1) + 1

- 𝑆(𝑛) = 2𝑛 − 1

𝑆(𝑛) = 2(2𝑛−1 − 1) + 1 = 2𝑛 − 2 + 1 =

=  2𝑛 − 1

Other method: add 1 to LHS and RHS
- 𝑆(0) + 1 =  1
- 𝑆(𝑛) + 1 = 2𝑆(𝑛 − 1) + 2

Def: 𝑈(𝑛) =  𝑆(𝑛) + 1

𝑈(𝑛) = 2𝑈(𝑛 − 1) ⇒ 𝑈(𝑛) = 2𝑛

1 move in 1 sec:µ 264 − 1 ≃ 500 000
years.
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INTRODUCTION TO ALGORITHMS
Algorithm for sorting:

- numbers according to inequalities
- symbols if there is an order relation between them

Problem of sorting:
- input: sequence of numbers (string of numbers) < 𝑎

1
, 𝑎

2
, 𝑎

3
,  ...  , 𝑎

𝑛
>

- output: permutation such that → numbers in< 𝑎
1
', 𝑎'

2
,  ...  ,  𝑎'

𝑛
> 𝑎'

1
≤ 𝑎'

2
≤... ≤ 𝑎'

𝑛

increasing order.

Intuition: move smaller number to the left.

Two main operations: compare and shift

Pseudocode notation: = assign the value to the variable (usually )𝑥 ← 𝑦 𝑦 𝑥 𝑥 = 𝑦
Def. of pseudocode: code that uses English but in a way that is sufficiently precise to be
uniquely defined.

Insertion sort pseudocode

Running time
We always want to choose the fastest algorithm (the one that has the least computational
cost) → we need to know the running time.

- The running time depends on the input: an already sorted sequence is easier to sort
- parametrize the running time by the size of the input (the length of the list we want to

sort), since short sequences are easier to sort than the long ones
- difficult to estimate the precise running time → we seek upper bounds on the

running time (e.g. we want to be sure that the running time is not larger than )𝑛2
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3 kind of analysis
1. worst case (usually) → = maximum time of algorithm on any input of size . It𝑇(𝑛) 𝑛

is a guarantee that you cannot do worse than predicted by the worst case analysis.
2. average case (sometimes) → = expected time of algorithm over an input of𝑇(𝑛)

size . It needs an assumption of the statistical distribution of the input → know on𝑛
average how long it takes to sort your string.

3. best-case (bogus) → cheat with a slow algorithm that works fast on some input →
not very informative. E.g.: if a list is already sorted, the running time will be
something of the order of operations.𝑛

Machine-Independent time
What is insertion sort’s worst-case time?
It depends on the speed of your computer → running time is machine dependent:

- relative speed (on the same machine)
- absolute speed (on different machines)

Big idea: ignore machine-dependent constants → consider a conventional unit cost for any
single elementary operation. E.g.: number of operations, since it is the same for everyone.
Look at the growth of (computational cost function) as → how the number of𝑇(𝑛) 𝑛 → ∞
operations grows as the size of the problem increases.

Asymptotic analysis of algorithm
The computational cost is a function of the size, not a number.

-notationΘ
Math: : there exists positive constants𝑓(𝑛) = Θ(𝑔(𝑛)) 𝑐

1
, 𝑐

2

and such that𝑛
0

for all0 ≤ 𝑐
1
𝑔(𝑛) ≤ 𝑓(𝑛) ≤ 𝑐

2
𝑔(𝑛) 𝑛 ≥ 𝑛

0

Explanation: a mathematical function is a of another𝑓(𝑛) Θ
function if is in between multiplied by a certain𝑔(𝑛) 𝑓(𝑛) 𝑔(𝑛)
constant and multiplied by another constant , with𝑐

1
𝑔(𝑛) 𝑐

2

, for all that are sufficiently large.𝑐
1

< 𝑐
2

𝑛

You are interested in what happens for large problems.

Practitioners:
Drop the low-order terms and ignore leading constants.

Example: 3𝑛3 + 90𝑛2 − 5𝑛 + 6046 = Θ(𝑛3)

Asymptotic performance

When n gets large enough , a algorithm always beats a algorithm.Θ(𝑛2) Θ(𝑛3)
- However, we should not ignore asymptotically slower algorithms.
- Real-world design situations often call for a careful balancing of

engineering objectives
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- Asymptotic analysis is a useful tool to help to structure our thinking
Insertion sort analysis: computational cost
Worst possible case: : Input sorted in the opposite direction → at each iteration you have to
shift.

( → proportional to)𝑇(𝑛) =
𝑗=2

𝑛

∑ Θ(𝑗) = Θ(𝑛2) = 𝑐
𝑗=2

𝑛

∑ 𝑗    α    
𝑗=1

𝑛

∑ 𝑗 α

→ computational cost of the insertion sort algorithm𝑇(𝑛) = 𝑛(𝑛+1)
2 𝑛 ≫ 1 𝑇(𝑛) = Θ(𝑛2)

Average case (with respect to the fact that the list of numbers is created using an uniform
probability distribution → we need to specify the probability distribution used): numbers in
uniform random position → half of the numbers are already sorted, the other half are not. All
permutations are equally likely.

𝑇(𝑛) =
𝑗=2

𝑛

∑ Θ( 𝑗
2 ) = Θ(𝑛2)

The insertion sort in the average case is as bad as in the worst case.

Is insertion sort a fast sorting algorithm?
- moderately so, for small 𝑛
- not at all, for large 𝑛

Merge Sort Algorithm (recursive)
Algorithm that uses recursion → function that takes as a function another function (itself) →
nested function.

MERGE SORT A[1 … n] → A = array of numbers
1. if → done𝑛 = 1
2. recursively sort A[1 … ⌈n/2⌉] and A[⌈n/2⌉+1 … n]

- “recursively sort” = use the same code applied to the subproblems →
program that calls itself inside its instructions → recursion

- “⌈…⌉” = the integer part of

- Split an array of length in 2 parts of length → if is even, you divide by 2𝑛 𝑛
2 𝑛

and you obtain an integer; if is odd, you divide by 2 and you round it up.𝑛
3. “merge” MERGE-SORT the two sorted lists

Divide and conquer
Very general strategy in computer science.
Merge-sort:

1. divide: divide the given -element array A into 2 subarrays of elements each𝑛 𝑛
2

2. conquer (reapply the same procedure): recursively sort the two subarrays
3. combine: merge 2 sorted subarrays into 1 sorted array
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Recursive Pseudocode

Merging two sorted arrays
To merge two sorted lists, you just have to compare the numbers, look for the smaller one,
extract it and put it aside. You are then left with two arrays of different length, where the
smallest element of the first array is still the same as before, but the first element of the
second array has changed, because the smallest number has been taken away . You repeat
the steps until you are left with already sorted numbers or just one number .

Time of ot merge a total of elements (linear time).= Θ(𝑛) 𝑛
The number of comparisons is of the same order of the length of the two arrays.

You stop when you reach one: → solve this𝑛/2𝑘 = 1
equation to know how many steps you have to do.
𝑛 = 2𝑘

→ number of operation will belog
2
𝑛 = 𝑘 𝑘 = log 𝑛

of order of log 𝑛
The computational cost is 𝑇(𝑛) = Θ(𝑛 ln 𝑛)

Other example: times𝑎𝑛 = 𝑎 · 𝑎 · 𝑎 · 𝑎 · 𝑎 ...  𝑎) 𝑛 = Θ(𝑛)

→ all the factors are the𝑎𝑛 = 𝑎𝑛/2 · 𝑎𝑛/2 = 𝑎𝑛/4 · 𝑎𝑛/4 · 𝑎𝑛/4 · 𝑎𝑛/4 = Θ(ln 𝑛)
same, so you can compute them only once.
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Analyzing merge sort
Profiling = looking at where your code spends the most time (where there are the heaviest
operations)

if𝑇(𝑛) = Θ1 𝑛 = 1
if2𝑇(𝑛/2) + Θ(𝑛) 𝑛 > 1

We do not know for sure the computational cost, but we know that it will satisfy this
equation.
We shall usually omit stating the base case when for sufficiently small , but𝑇(𝑛) = Θ(1) 𝑛
only when it has no effect on the asymptotic solution to the recurrence .

→ in the asymptotic form the base of the𝑇(𝑛) = 2𝑇(𝑛/2) + Θ(𝑛) ⇒ 𝑇(𝑛) = Θ(𝑛 ln 𝑛)
logarithm is not important, because I can always change it by multiplying by a constant.

Solve , where is constant.𝑇(𝑛) = 2𝑇(𝑛/2) + 𝑐𝑛 𝑐 > 0
- Expand the equation → 𝑇(𝑛/2) = 2𝑇(𝑛/4) + 𝑐(𝑛/2)
- 𝑇(𝑛) = 2(2𝑇(𝑛/4) + 𝑐(𝑛/2)) + 𝑐𝑛 = 2(2𝑇(𝑛/8) + 𝑐(𝑛/4) + 𝑐(𝑛/2)) + 𝑐(𝑛/4)

Recursively apply the algorithm substituting for each the right-hand side of the equation𝑇
that has to satisfy.𝑇

Graphic representation of the residual terms c n·
cn

2(cn/2)=cn

2(2(cn/4)=cn

At each iteration you accumulate this computational cost, and to evaluate the total
computational cost, you have to count how many times you are going to execute this.
It is already decided → # of levels of the structure = log 𝑛
Total cost = # levels cn· ⇒ 𝑇(𝑛) = log 𝑛 · 𝑐𝑛 = Θ(𝑛 · log 𝑛)

Conclusions

grows more slowly thanΘ(𝑛 log 𝑛) Θ(𝑛2)
- Therefore merge-sort asymptotically beats insertion-sort

in the worst case
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- In practice, merge-sort beats insertion sort for n>30 or so.

GRAPH THEORY
Simple Graph: → collection of vertices and edges𝐺(𝑉, 𝐸)

= {vertices}, = {edges} → 2 sets𝑉 𝐸
Vertices are indicated by symbols.
𝑉 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, ℎ, 𝑘}
An edge, graphically, is something connected to vertices.
In terms of set theory an edge is identified by a pair of
symbols.

=𝐸 {(𝑎, 𝑏), (𝑎, 𝑔), (𝑎, ℎ), (𝑎, 𝑘),  ...  ,  (ℎ, 𝑘)}
→  cardinality of the set → number of elements|𝐸| = 16

inside the set

Eulerian graphs
Graph that you can draw without taking your pen off the paper or going over the
same line twice → you never have overlapping edges.

Bipartite graphs
A graph in which the set of vertices is given by the union of two sets 𝑋
and and all the edges are of the form and , where and𝑌 𝑥 𝑦 𝑥 ∈ 𝑋 𝑦 ∈ 𝑌
→ all the edges go from 1 set to the other set, but there are no edges
that connect vertices inside the two subsets.

is bipartite if where and are disjoint and every edge is𝐺 𝑉 = 𝑋 ∪ 𝑌 𝑋 𝑌
of the form where and .(𝑥, 𝑦) 𝑥 ∈ 𝑋 𝑦 ∈ 𝑌

Vertex coloring
You have a graph and a certain number of colors.
Colors {𝑅, 𝐵, 𝐺}
Let = {colors}𝐶
A vertex coloring of is a map from the vertices to the color ( )𝐺 𝑓: 𝑉 → 𝐶
We say that gets colored with𝑣 ∈ 𝑉 𝑓(𝑣)
The coloring is proper if and only if the endpoints of an edge always have
different colors:

coloring proper iff (𝑎, 𝑏) ∈ 𝐸 ⇒ 𝑓(𝑎) ≠ 𝑓(𝑏)
The chromatic number is the minimum number of colors you need in order to colorχ(𝐺)
properly your graph.
Theorem: if you have a graph which can be drawn on a plane without overlapping edges
(graph corresponding to a map) , the chromatic number for planar (no overlapping edges)
graph χ(𝐺

𝑝𝑙𝑎𝑛𝑎𝑟
) = 4
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Subgraphs
A graph obtained by taking subsets of the original graph.

is a subgraph of if (subset) and .𝐺' = (𝑉', 𝐸') 𝐺(𝑉, 𝐸) 𝑉' ⊆ 𝑉 𝐸' ⊆ 𝐸
is a spanning subgraph if → it contains all the vertices but a𝐺' 𝑉' = 𝑉

smaller number of edges.

If then is the subgraph of induced𝑉' ⊆ 𝑉 𝐺[𝑉'] = (𝑉', {𝑢, 𝑣} ∈ 𝐸:  𝑢, 𝑣 ∈ 𝑉'}) 𝐺
by → a subgraph can be induced by the choice of the vertices.𝑉'

Induced subgraph: composed by the chosen vertices + all the edges
that connect them.
Similarly, you can fix the edges and include all the vertices that
appear as end points of those edges: if then𝐸

1
⊆ 𝐸 𝐺[𝐸

1
] = (𝑉

1
, 𝐸

1
)

where is also induced (by ).𝑉
1

= {𝑣 ∈ 𝑉
1
: ∃ 𝑒 ∈ 𝐸

1
: 𝑣 ∈ 𝑒} 𝐸

1

Isomorphism
Two graphs and are isomorphic if there𝐺

1
= (𝑉

1
, 𝐸

1
) 𝐺

2
= (𝑉

2
, 𝐸

2
)

exists a bijection such that the two graph coincide:𝑓: 𝑉
1

→ 𝑉
2

.(𝑣, 𝑤) ∈ 𝐸
1

↔ (𝑓(𝑣), 𝑓(𝑤)) ∈ 𝐸
2

Necessary condition for the isomorphism : you need to have the same
number of vertices, edges, and degree of the nodes .

Complete graphs
A graph in which all the modes are connected to all the other nodes

is the complete graph on vertices.𝐾
𝑛

= ([𝑛], {(𝑖, 𝑗): 1 ≤ 𝑖 < 𝑗 ≤ 𝑛} 𝑛

Complete bipartite graph: there are edges that connect all nodes of one side to all nodes
on the other side

is the complete bipartite graph on the𝐾
𝑚,𝑛

= ([𝑚] ∪ [𝑛],  {(𝑖, 𝑗):  𝑖 ∈ [𝑚], 𝑗 ∈ [𝑛]}) 𝑚 + 𝑛

vertices.

Vertex Degree
Degree of a vertex → number of edges incident with the vertex

= degree of vertex in = number of edges incident𝑑
𝐺

(𝑣) 𝑣 𝐺

with v
= minimum degree of a graph → degree of𝑆(𝐺) =

𝑣
min 𝑑

𝐺
(𝑣)

vertex with minimum degree
= maximum degree among all nodes → degree of vertex with maximum∆(𝐺) =

𝑣
max 𝑑

𝐺
(𝑣)

degree .
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MATRICES AND GRAPHS
Important because you can use linear algebra to make operations on a graph.

Incidence matrix (rectangular matrix)
matrix𝑀: |𝑉| × |𝐸|

→ if vertex belongs to edge𝑀(𝑣, 𝑒) = 1 𝑣 ∈ 𝑒
→ if vertex does not belong to the edge0 𝑣 ∉ 𝑒

- n° of rows = n° of vertices
- n° of columns = n° of edges

Properties:
- each column can only have two 1s → each edge can only have two

endpoints
- each row has a number of 1s equal to the degree of the corresponding

vertex

Adjacency matrix
matrix → square matrix indexed by the vertices𝐴: 𝑉 × 𝑉

adjacent𝐴(𝑣, 𝑤) = 1 𝑣, 𝑤
0 otherwise

“adjacent” → of vertices are directly connected by an edge → : the pair(𝑣, 𝑤) ∈ 𝐸
of vertices belongs to the edge set.(𝑣, 𝑤)
On the diagonal there are always 0s because we do not allow self loops.
Properties:

- it is symmetric
- each row/column has a number of 1s equal to the degree of the corresponding

vertex

Theorem 1
The sum of the degree of all the vertices for every graph is twice the number of edges

𝑣∈𝑉
∑ 𝑑

𝐺
(𝑣) = 2|𝐸|

Proof
Consider the incidence matrix .𝑀

- If you count the 1s in the rows (each row corresponds to a vertex) , you find that the
number of 1s corresponds to the sum of the degree of the vertices

# 1s in matrix is𝑀
𝑣∈𝑉
∑ 𝑑

𝐺
(𝑣)

- If you count the 1s in the columns (each columns corresponds to an edge) , you find
that the number of 1s is twice the number of edges

# 1s in matrix is → each column has 2 1s. # edges = # of columns𝑀 2|𝐸|
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Corollary 1
In any graph, the number of vertices of odd degree is even.
If the degree of a vertex is 0 we define it as even.
Proof
Let {odd degree vertices}→ set of vertices that have odd degree𝑂𝑑𝑑 =
and = \ → Total set of vertices - Set of odd degree vertices𝐸𝑣𝑒𝑛 𝑉 𝑂𝑑𝑑

𝑣
∑ 𝑑

𝐺
(𝑣) = 2|𝐸|

→ the sum of even number is always even
𝑣∈𝑂𝑑𝑑

∑ 𝑑
𝐺

(𝑣) +
𝑣∈𝐸𝑣𝑒𝑛

∑ 𝑑
𝐺

(𝑣) = 2|𝐸|

→ the difference between two even numbers is even
𝑣∈𝑂𝑑𝑑

∑ 𝑑
𝐺

(𝑣) = 2|𝐸| −
𝑣∈𝐸𝑣𝑒𝑛

∑ 𝑑
𝐺

(𝑣)

If you sum odd numbers, the only way to obtain an even number is to have an even number
of terms.

Path and walks over graphs
Walks
Sequence of vertices in .𝐺

is a walk in if for + empty walks (a vertex is𝑊 = (𝑣
1
, 𝑣

2
,  ...  , 𝑣

𝑘
) 𝐺 (𝑣

𝑖
, 𝑣

𝑖+1
) ∈ 𝐸 1 ≤ 𝑖 ≤ 𝑘

only connected to itself).
Path
Walk in which the vertices are distinct (no vertex is visited twice → shortest walk).
Every path is a walk , but not every wave is a path .

→ path𝑤
1

= 𝑎, 𝑏, 𝑐, 𝑒, 𝑑

→ walk𝑤
2

= 𝑎, 𝑏, 𝑎, 𝑐, 𝑒

→ walk𝑤
3

= 𝑔, 𝑓, 𝑐, 𝑒, 𝑓

A walk is closed if the starting point and the end point are the same .(𝑣
1

= 𝑣
𝑘
)

A cycle is a closed walk in which the vertices are distinct except for the first and the last
one (𝑣

1
, 𝑣

𝑘
)

→  cycle → → only vertex visited twice is the starting one𝑏, 𝑐, 𝑒, 𝑑, 𝑏
(= last one)

→ not a cycle → vertex is visited more than once but𝑏, 𝑐, 𝑎, 𝑏, 𝑑, 𝑒, 𝑐, 𝑏
it is not a starting and needing point.

Connected components
Intuition : a connected component is a piece of graph such that you can always find a path
connecting two points. We define a relation ~ on ( set of vertices).𝑉

and are related ( ) if and only if there is a walk from to (doesn't matter if a vertex𝑎 𝑏 𝑎 ∼ 𝑏 𝑎 𝑏
is visited many times , the important thing is that the vertices are topologically connected).
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Claim: is an equivalence relation → it satisfies the properties of :∼
- reflexivity: connected to ( ) is a (trivial) walk from to → an empty walk is𝑣 𝑣 𝑣 ∼ 𝑣 𝑣 𝑣

still a walk → a vertex is always connected to itself .
- symmetry: implies → you can reverse the walk , there is no direction𝑢 ∼ 𝑣 𝑣 ∼ 𝑢

on the graph (we are not considering oriented graphs).
is a walk from to implies that is a walk(𝑢 = 𝑢

1
, 𝑢

2
,  ...  , 𝑢

𝑘
= 𝑣) 𝑢 𝑣 (𝑢

𝑘
, 𝑢

𝑘−1
,  ...  ,  𝑢

1
) 

from to .𝑣 𝑢
- transitivity: and implies𝑢 ∼ 𝑣 𝑣 ∼ 𝑤 𝑢 ∼ 𝑤

is a walk from to and𝑤
1

= (𝑢 = 𝑢
1
, 𝑢

2
,  ...  , 𝑢

𝑘
= 𝑣) 𝑢 𝑣

is a walk from to implies that𝑤
2

= (𝑣
1

= 𝑣, 𝑣
2
, 𝑣

3
,  ...  , 𝑣

𝑙
= 𝑤) 𝑣 𝑤

is a walk from to .(𝑤
1
, 𝑤

2
) = (𝑢

1
, 𝑢

2
,  ...  ,  𝑢

𝑘
, 𝑣

2
, 𝑣

3
,  ...  , 𝑣

𝑙
) 𝑢 𝑣

You have to join two walks , without writing twice the connecting point.

You can decompose your vertices in equivalence classes under the relation: all the nodes
that are related by the definition of connectivity are in the same class.
We can divide the set of vertices as the union of subsets which compose the classes.
Given the three properties of the equivalence relation, you can define the notion of
equivalence classes.
The equivalence classes of are called connected components.∼

In general the set of vertices can be decomposed as the union of many connected
components. ( where are connected components).𝑣 = 𝑐

1
∪ 𝑐

2
∪... ∪ 𝑐

𝑟
𝑐

1
, 𝑐

2
,..., 𝑐

𝑟

We let be the number of connected components of .ω(𝐺)(= 𝑟) 𝐺
If a graph is fully connected (we have just 1 connected component ): .ω(𝐺) = 1

is connected iff i.e. there is a walk between every pair of vertices in the graph.𝐺 ω(𝐺) = 1
Thus induce the decomposition of the graph in connected subgraphs𝑐

1
, 𝑐

2
,..., 𝑐

𝑟

of .𝐺[𝑐
1
],..., 𝐺[𝑐

𝑟
] 𝐺

You can associate to each connected component a subgraph → if you take the union of
them you can reconstruct .𝐺

Computational important properties
Given a walk on a graph, we call the n° of edges in ( where l stands for “length”).𝑤 𝑙(𝑤) 𝑤
Lemma 1
Suppose is a walk from vertex to vertex and that minimizes the length over all𝑤 𝑎 𝑏 𝑤 𝑙
possible walks from to . Then is a path.𝑎 𝑏 𝑤
If you want to minimize the length, you should avoid going through the same vertex twice.
Proof
Suppose it is some path and at a certain point you repeat a𝑤 = (𝑎 = 𝑎

0
, 𝑎

1
,..., 𝑎

𝑘
= 𝑏)

vertex twice where . Then I can construct a new walk𝑎
𝑖

= 𝑎
𝑗

0 ≤ 𝑖 < 𝑗 ≤ 𝑘
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in which I delete everything in between the two identical vertices𝑤' = (𝑎
0
, 𝑎

1
,..., 𝑎

𝑖
, 𝑎

𝑗+1
,..., 𝑎

𝑘
)

and join what remains.
is also a walk from to and (with being the𝑤' 𝑎 𝑏 𝑙(𝑤') = 𝑙(𝑤) − (𝑗 − 𝑖) < 𝑙(𝑤) (𝑗 − 1)

number of elements previously deleted) → the initial walk could not have been a minimum
length walk → contradiction
A minimum length walk is a path.
Corollary
If two vertices and are in relation, then there is a path from to (you can always create𝑎 𝑏 𝑎 𝑏
a path) so is connected there is a path from to .𝐺 ↔ ∀𝑎, 𝑏 ∈ 𝑉 𝑎 𝑏

In the algorithm, if I am looking for a path, I should avoid loops (repetition of vertices).

BREADTH FIRST SEARCH - BFS
Algorithms used to discover connected components (who is connected with who) using
only local information.
If you have a complicated graph you can only see the nodes that are connected to you →
you have only local information.
We start with a vertex . We define such that is the length of the shortest𝑣 ∈ 𝑉 𝑤 ∈ 𝑉 𝑑(𝑣, 𝑤)
path from to .𝑣 𝑤

- = distance: minimum length (always) among all possible lengths.𝑑(𝑣, 𝑤)
For let𝑡 = 0, 1, 2,... 𝐴

𝑡
= {𝑤 ∈ 𝑉: 𝑑(𝑣, 𝑤) = 𝑡}

- = stages of the algorithm.𝑡
We are constructing a sequence of layers of vertices that are at distance from the set of𝑡
vertices constructed at the previous stage .
𝐴

0
= {𝑣}

𝐴
1

= {𝑤 ∈ 𝑉: 𝑑(𝑣, 𝑤) = 1}

𝐴
2

= {𝑤 ∈ 𝑉: 𝑑(𝑣, 𝑤) = 2}

𝐴
3

= {𝑤 ∈ 𝑉: 𝑑(𝑣, 𝑤) = 3}

Each time I add nodes just by looking at the nearest
neighborhood of tha last set I have built → local information.

and𝐴
0

= {𝑣} 𝑣 ∼ 𝑤 ↔ 𝑑(𝑣, 𝑤) < ∞

Once we include a node to a subset, we put a flag (assign a binary value) to recognize if you
have already seen it or not.
In BFS we construct by𝐴

0
, 𝐴

1
, 𝐴

2
,...

an edge such that }𝐴
𝑡+1

= {𝑤 ∉ 𝐴
0

∪ 𝐴
1

∪... ∪ 𝐴
𝑡
: ∃ (𝑢, 𝑤) 𝑢 ∈ 𝐴

𝑡

- = set of vertices in layer → all the vertices that do not belong to the𝐴
𝑡+1

𝑡 + 1

previous layer, such that there exists an edge that have vertices at distance 1(𝑢, 𝑤)
from any vertex belonging to the last subset constructed .𝑢 𝐴

𝑡

Note: no edges ( ) between and for , else𝑎, 𝑏 𝐴
𝑘

𝐴
𝑙

𝑙 − 𝑘 ≥ 2 𝑤 ∈ 𝐴
𝑘+1

≠ 𝐴
𝑙
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In this way we can find all the vertices in the same component as the starting vertex just𝐶 𝑣
using local information . By repeating for we find another component etc..𝑣' ∉ 𝐶

Local information → something that does not divert with the size of the problem.

Characterization of bipartite graphs
Theorem 1

is bipartite if and only if has no cycles of odd length.𝐺 𝐺
- bipartite → can be decomposed in two subset of vertices that are not connected

(there are no edges connecting vertices of the same subset)
- if and only if → you have to prove the theorem in both directions in order for it to be

true.
Proof → : 𝐺 = (𝑋 ∪ 𝑌, 𝐸)
If a bipartite graph is composed of the union of the subset of vertices and such that𝑋 𝑌
they are connected, whenever you make a move over an edge you are
going from a subset to the other.
You never have ledges connecting two vertices of the same subset
Suppose is a cycle. Suppose . Then ,𝐶 = (𝑢

1
, 𝑢

2
,..., 𝑢

𝑘
, 𝑢

1
) 𝑢

1
∈ 𝑋 𝑢

2
∈ 𝑌

, … , implies is even (because in order to connect to𝑢
3

∈ 𝑋 𝑢
𝑘

∈ 𝑌 𝑘 𝑋 𝑋

you have to make 2 steps → the cycle must be a multiple of 2 steps).
This direction of the proof (if bipartite than is even) is trivial.𝑘
Second part → if the graph has no cycles of odd length, then it is bipartite (more
complicated)
Proof by contradiction

Assume is connected, else apply the following argument to each component← 𝐺
- only look at connected components of a graph → we can reapply the statement to

each connected component.
Choose and construct by BFS.𝑣 ∈ 𝑉 𝐴

0
, 𝐴

1
, 𝐴

2
,...

- have no direct connection because, by construction of the algorithm, we𝐴
0
, 𝐴

2
, 𝐴

4
,...

are dividing the graph in sets
and → all the nodes are separated = they do not𝑋 = 𝐴

0
∪ 𝐴

2
∪ 𝐴

4
∪... 𝑌 = 𝐴

1
∪ 𝐴

3
∪ 𝐴

5
∪...

share an edge.
We need only to show that raved contain no internal edges round then all edges must𝑋 𝑌
join raved in order to show that it is bipartite.𝑋 𝑌
Suppose that contains an edge where and𝑋 (𝑎, 𝑏) 𝑎 ∈ 𝐴

𝑘
𝑏 ∈ 𝐴

𝑙

There can be no edges between and if their distance is , otherwise, they would be𝑎 𝑏 ≥ 2
merged in the same set.

1. if then which contradicts (1)𝑘 ≠ 𝑙 |𝑘 − 𝑙| ≥ 2
- There can be no edges between and if their distance is ,𝑎 𝑏 ≥ 2

otherwise, they would be merged in the same set.
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If the green edge existed, the length of the cycle would be odd, which is a
contradiction

2. → we want to show that contains no edges inside a given layer of the𝑘 = 𝑙 𝑋
algorithm.

There exists paths and .(𝑣 = 𝑣
0
, 𝑣

1
, 𝑣

2
,..., 𝑣

𝑘
= 𝑎) (𝑣 = 𝑤

0
, 𝑤

1
, 𝑤

2
,..., 𝑤

𝑘
= 𝑏)

Let → is an odd-cycle with length𝑗 = max {𝑡: 𝑣
𝑡

= 𝑤
𝑡
} (𝑣

𝑗
, 𝑣

𝑗+1
,..., 𝑣

𝑘
, 𝑤

𝑘−1
,..., 𝑤

𝑗
)

.2(𝑘 − 𝑗) + 1

If the graph contains one edge inside the subset , then there must exist a cycle of odd𝑋
length , which is impossible because we are assuming that the graph has no odd cycle
(starting assumption) → edge inside the subset cannot exist → the graph is bipartite.

In this proof we are using an algorithm: the properties of BFS.

Walks and powers of matrices
Theorem 2

= number of walks of length from to with edges.𝐴𝑘(𝑣, 𝑘) 𝑘 𝑣 𝑤 𝑘

- adjacency matrix → . means A to the power of and𝐴𝑘(𝑣, 𝑘) ≠ [𝐴(𝑣, 𝑤)]𝑘 (𝐴𝑘)(𝑣, 𝑘) 𝑘
then take the elements and of the matrix.𝑣 𝑤

- Suppose we have a graph and we want to go from to in steps. How many𝑣 𝑤 𝑘
walks are there? (we can go through the same vertex more than once.)

1 if → two vertices are connected𝐴(𝑣, 𝑤) = (𝑣, 𝑤) ∈ 𝐸
0 else

The theorem says that in order to compute this combinatorial number we just have to have
the adjacency matrix , take the power and compute the matrix elements.𝑘
Computational complexity : complexity of multiplying matrices.

Proof by induction
By induction on . Trivially true for (initial condition)𝑘 𝑘 = 1

- We have to show that our statement is true for the starting point. We have to show
that the fact that it is true at the step implies that it is true at the step → we𝑘 𝑘 + 1
find all the possible cases → we prove the result true: if we have two vertices, the
number of walks can either be 0 (not connected) or 1 (connected).

Assume true for some 𝑘 ≥ 1
- assume true for step . You have to prove that the transition from to𝑘 𝑘 𝑘 + 1

preserves the property.
1) Let be the number of walks from to with edges. (definition)𝑁

𝑡
(𝑣, 𝑤) 𝑣 𝑤 𝑡

2) Let be the number of walks from to with edges whose penultimate vertex𝑁
𝑡
(𝑣, 𝑤; 𝑢) 𝑣 𝑤 𝑡

is .𝑢
- Same as before but conditioned on the fact that on the penultimate step you have to

go through a given vertex.
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- We start from and we want to reach , but there are many possible walks. All the𝑣 𝑤
walks that go through are a subset of all the path of length between and . If I𝑢 𝑡 𝑣 𝑤
sum over all possible choices of (penultimate vertex) I am going to recover the𝑢
total number of walks.

→ sum of all possible choices of𝑁
𝑡
(𝑣, 𝑤) =

𝑢
∑ 𝑁

𝑡
(𝑐, 𝑤; 𝑢) 𝑢

→ we are assuming that𝑁
𝑘+1

(𝑣, 𝑤) =
𝑢∈𝑉
∑ 𝑁

𝑘+1
(𝑣, 𝑤; 𝑢) 𝑁

𝑘
= 𝐴𝑘

- The number of walks of length between and can be written as a sum over𝑘 + 1 𝑣 𝑤
all possible choices of the penultimate step of the number of walks of length 𝑘 + 1
between and that are conditioned to go through as a penultimate step.𝑣 𝑤 𝑢

Property of the adjacency matrix:

=
𝑢∈𝑉
∑ 𝑁

𝑘
(𝑢, 𝑣)𝐴(𝑢, 𝑤)

- → the matrix element works as a filter: if it is equal to 0 it means that there is𝐴(𝑢, 𝑤)
no edge between the we are looking at and , so we are not going to count that𝑢 𝑤
as a walk. If there is an edge we have to count it, and it is going to add 1 to the total
length.

- When you reach you have done steps . Then you have to do 1 more step (the𝑢 𝑘
last one).
Total number of steps = total number of walks of length summed over all the s𝑘 𝑢
that are connected to → this would give the last step, so we add 1 to the length.𝑤

Using the assumption of the theorem and substituting:𝑁
𝑘
(𝑣, 𝑤) = (𝐴𝑘)

𝑣,𝑤
= 𝐴𝑘(𝑣, 𝑤)

→ matrix multiplication →=
𝑢∈𝑉
∑ 𝐴𝑘(𝑣, 𝑢)𝐴(𝑢, 𝑤) (𝐴𝑘 · 𝐴)

𝑣,𝑤
= (𝐴𝑘+1)

𝑣,𝑤

- assuming that the theorem is true for length , we find that it is true also for length𝑘
→ given the initial condition that it is true for , then it is true for all the𝑘 + 1 𝑘 = 1

others.

= →𝐴𝑘+1(𝑣, 𝑤) 𝑁
𝑘+1

= 𝐴𝑘+1

Additional notion
A graph that has no loops is called a tree.
If a tree has vertices, it will have edges.𝑛 𝑛 − 1
If you cut any edge of the tree, you are going to divide your graph in two subgraphs that are
not connected → you can solve the subproblems and add the solutions together.
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ASYMPTOTIC NOTATION
- - notation used to have a common language𝑂 − Ω − Θ
- Recursion tree → for an intuition
- Master method → given any recursive equation that describes the behavior of any

recursive algorithm allows you to compute the asymptotic behavior ( computational
cost).

notation (upper bounds):𝑂 −
we say that a certain function is a big of a function ( if it is𝑓 − 𝑂 𝑔 𝑓(𝑛) = 𝑂(𝑔(𝑛))
upper-bounded by some constant multiplied by if (number of steps of the𝑐 𝑔(𝑛) 𝑛
algorithm) is sufficiently large .
For :𝑐 > 0,  𝑛

0
> 0, ∀𝑛 > 0 0 ≤ 𝑓(𝑛) ≤ 𝑐𝑔(𝑛)

is therefore upper-bounded by : there exists a constant multiplied by such that is𝑓 𝑔 𝑔 𝑓
always smaller or equal to if is sufficiently large (𝑔 𝑛 𝑛 ≥ 𝑛

0
).

Set definition of O-notation
Instead of having one precise function , you can say that you have a
function plus some term which is smaller than for sufficiently large → it𝑛 𝑛
is a set of functions. You can say that this set of functions is if the𝑂(𝑔(𝑛))
same condition applies for sufficiently large.𝑛

there exists constants such that𝑂(𝑔(𝑛)) = {𝑓(𝑛): 𝑐 > 0, 𝑛
0

> 0

0 ≤ 𝑓(𝑛) ≤ 𝑐𝑔(𝑛) ∀𝑛 ≥ 𝑛
0
}

Convention: a set in a formula represents an anonymous function in the
set.

Example: means for any for some𝑛2 + 𝑂(𝑛) = 𝑂(𝑛2) 𝑓(𝑛) ∈ 𝑂(𝑛):  𝑛2 + 𝑓(𝑛) = 𝑛(𝑛)

𝑛(𝑛) ∈ 𝑂(𝑛2)

notation (lower bounds):Ω −
We say that is of if is greater or equal to some constant times𝑓 Ω 𝑔 𝑓 𝑐 𝑔

there exists constants such thatΩ(𝑔(𝑛)) = {𝑓(𝑛): 𝑐 > 0, 𝑛
0

> 0

0 ≤ 𝑐𝑔(𝑛) ≤ 𝑓(𝑛) ∀𝑛 ≥ 𝑛
0
}

notation (tight bounds)Θ −
If is within a band , upper bounded by and lower bounded by multiplied by𝑓(𝑛) 𝑔 𝑔
different constant ( both big and big of ) it means that𝑓(𝑛) 𝑂 Ω 𝑔 𝑓(𝑛)
is equal to up to a constant.𝑔(𝑛)

Θ(𝑔(𝑛)) = 𝑂(𝑔(𝑛)) ∩ Ω(𝑔(𝑛))
there exist positive constants and such thatΘ(𝑔(𝑛)) = {𝑓(𝑛): 𝑐

1
, 𝑐

2
𝑛

0 ≤ 𝑐
1
𝑔(𝑛) ≤ 𝑓(𝑛) ≤ 𝑐

2
𝑔(𝑛) ∀𝑛 ≥ 𝑛

0

Example: 1
2 𝑛2 − 2𝑛 = Θ(𝑛2)
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notation and nonation:𝑜 − ω −
and notation are like and .𝑂 − Ω − ≤ ≥
and notation are like and𝑜 − ω − < >.

A function is a little of another if it is strictly dominated.𝑜
for any constant such that𝑜(𝑔(𝑛) = {𝑓(𝑛): 𝑐 > 0, 𝑛

0
> 0 0 ≤ 𝑓(𝑛) < 𝑐𝑔(𝑛) ∀𝑛 ≥ 𝑛

0
}

- { } set notation to indicate the family of functions
- In practice you take the limit because grows faster than

𝑛→∞
lim 𝑓(𝑛)/𝑔(𝑛) = 0 𝑔(𝑛)

.𝑓(𝑛)

es. 2𝑛2 = 𝑜(𝑛3) (𝑛
0

= 2/𝑐)

A function is a little of if is strictly dominating𝑓(𝑛) ω 𝑔(𝑛) 𝑓(𝑛) 𝑔(𝑛)
for any constant such thatω(𝑔(𝑛)) = {𝑓(𝑛): 𝑐 > 0, 𝑛

0
> 0 0 ≤ 𝑐𝑔(𝑛) < 𝑓(𝑛) ∀𝑛 ≥ 𝑛

0
}

- In practice you take the limit because grows faster than
𝑛→∞
lim 𝑓(𝑛)/𝑔(𝑛) = ∞ 𝑓(𝑛)

.𝑔(𝑛)

∃𝑐:

𝑓(𝑛) = 𝑂(𝑔(𝑛) 𝑓(𝑛) ≤ 𝑐𝑔(𝑛) 𝑛 > 0

Ω 𝑓(𝑛) ≥ 𝑐𝑔(𝑛) 𝑛 > 0

𝑜 𝑓(𝑛) < 𝑐𝑔(𝑛) 𝑛 > 0

ω 𝑓(𝑛) > 𝑐𝑔(𝑛) 𝑛 > 0

Solving recurrences
For a given algorithm, we want to be able to say that the running time is upper bounded and
lower bounded by some functions → we want to characterize how hard it is going to be to
solve the problem, in terms of computational cost.
Particular case of recursive algorithms: the running time of the algorithm satisfies a
recursive equation.

- The analysis of merge sort required us to solve a recurrence.
- Recurrences are like solving integrals, differential equations, etc. → there is not a

single method to solve the equation.
- Applications of recurrences to divide-and-conquer algorithms.

Recursion-tree method
- A recursion tree models the costs (time) of a recursive execution of an algorithm →It

gives us a mental picture of what happens as you iterate the recurrence.
- The recursion-tree method can be unreliable , just like any method that uses ellipses

(... in a sentence).
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- The recursion-tree method promotes intuition, however.
- The recursion-tree method is good for generating guesses for the substitution

method.
Example of recursion tree:

Solve 𝑇(𝑛) = 𝑇(𝑛/4) + 𝑇(𝑛/2) + 𝑛2:
The problem takes as an input an array of size , and it divides it in two sub-arrays of size𝑛

and and when merging together the solutions of these two subproblems it is going𝑛/2 𝑛/4

to pay a computational cost of .𝑛2

We will reapply the algorithm to the subproblems with a certain computational cost → the
recursion tree is a picture of this process.

→ computational cost of(𝑛/4)2

the step corresponding to calling
the algorithm on a subproblem of
size 𝑛/4

Total (sum of all the partial costs of all levels)=𝑛2(1 + 5
16 + ( 5

16 )2 +...) = Θ(𝑛2)

→ it is a geometric series.𝑇(𝑛) = 𝑛2

𝑙=0

𝐿 𝑚𝑎𝑥

∑ ( 5
16 )𝑙 = 𝑛2

𝑙=0

𝐿 𝑚𝑎𝑥

∑ = ((1 + λ𝐿𝑚𝑎𝑥 +1 )/(1 − λ)) · 𝑛2

𝑇(𝑛) = Θ(𝑛2)

Master method (theorem)
The master method applies to recurrences of the form:

𝑇(𝑛) = 𝑎𝑇(𝑛/𝑏) + 𝑓(𝑛)
- You start with a problem of size , you divide it into a subproblems of size , and𝑛 𝑎/𝑏

while doing this you pay a computational cost of 𝑓(𝑛)
- → how many times you are applying this recursion on problems of size𝑎 > 0 𝑛/𝑏
- → reduce the size.𝑛/𝑏 < 1

where , and is asymptotically positive ( .𝑎 ≥ 1, 𝑏 ≥ 1 𝑓 𝑓(𝑛) > 0,  𝑛 > 𝑛
0
)

- We can only apply this theorem when the algorithm solves the problem by dividing it
into subproblems of equal size.
When is not an integer number, you either take the ceiling or the floor of the𝑛/𝑏
number.

Compare with → compare the two functions, and depending on their relation you𝑓(𝑛) 𝑛
log

𝑏
𝑎

have different cases:

1. for some constant .𝑓(𝑛) = 𝑂(𝑛
log

𝑏
𝑎−ϵ

) ϵ > 0
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grows polynomially slower than (by an factor) → upper-bounded𝑓(𝑛) 𝑛
log

𝑏
𝑎

𝑛ϵ 𝑓(𝑛)

by .𝑛
log

𝑏
𝑎−ϵ

Solution: 𝑇(𝑛) = Θ(𝑛
log

𝑏
𝑎
)

2. for some constant .𝑓(𝑛) = Θ(𝑛
log

𝑏
𝑎
lg𝑘𝑛) 𝑘 ≥ 0

and grow at similar rates.𝑓(𝑛) 𝑛
log

𝑏
𝑎

Solution: 𝑇(𝑛) = Θ(𝑛
log

𝑏
𝑎
lg𝑘+1𝑛)

3. for some constat .𝑓(𝑛) = Ω(𝑛
log

𝑏
𝑎+ϵ

) ϵ > 0

grow polynomially faster than (by an factor) and satisfies the𝑓(𝑛) 𝑛
log

𝑏
𝑎

𝑛ϵ 𝑓(𝑛)
regularity condition that for some constant .𝑎𝑓(𝑛/𝑏) ≤ 𝑐𝑓(𝑛) 𝑐 < 1

Solution: 𝑇(𝑛) = Θ(𝑓(𝑛)).
If one of these 3 conditions holds, we can use this theorem, otherwise we have to use other
(complicated) methods.
Examples:

1. 𝑇(𝑛) = 4𝑇(𝑛/2) + 𝑛

𝑎 = 4, 𝑏 = 2 ⇒ 𝑛
log

𝑏
𝑎

= 𝑛2; 𝑓(𝑛) = 𝑛

Case 1: for𝑓(𝑛) = 𝑂(𝑛2−ϵ) ϵ = 1

∴ 𝑇(𝑛) = Θ(𝑛2)

𝑓(𝑛) = 𝑂(𝑛
log

𝑏
𝑎−ϵ

)
lg

2
4 = 2lg

2
4 = 2

𝑓(𝑛) = 𝑂(𝑛2−ϵ)

𝑓(𝑛) = 𝑛 ≤ 𝑛2−ϵ

ϵ > 0,  𝑛 > 𝑛
0

2. 𝑇(𝑛) = 4𝑇(𝑛/2) + 𝑛2

𝑎 = 4, 𝑏 = 2 ⇒ 𝑛
log

𝑏
𝑎

= 𝑛2; 𝑓(𝑛) = 𝑛2

Case 2: , that is,𝑓(𝑛) = Θ(𝑛2lg0𝑛)
𝑘 = 0

∴ 𝑇(𝑛) = Θ(𝑛2 lg 𝑛)

lg
2
4 = 2

Case 1: 𝑓(𝑛) = 𝑂(𝑛2−ϵ)

→ NO𝑛2

Case 2: 𝑓(𝑛) = Θ(𝑛2lg𝑘𝑛)
true for → YES𝑘 = 0

3. 𝑇(𝑛) = 4𝑇(𝑛/2) + 𝑛3

𝑎 = 4, 𝑏 = 2 ⇒ 𝑛
log

𝑏
𝑎

= 𝑛2; 𝑓(𝑛) = 𝑛3

Case 3: for𝑓(𝑛) = Ω(𝑛2+ϵ) ϵ = 1

and (reg.cond.) for4(𝑛/2)3 ≤ 𝑐𝑛3

𝑐 = 1/2

∴ 𝑇(𝑛) = Θ(𝑛3)

Case 1: → NO𝑛3 = 𝑂(𝑛2−ϵ)

Case 2: → NO𝑛3 = Θ(𝑛2lg𝑘𝑛)

Case 3: → Yes𝑛3 = Ω(𝑛2+ϵ)
∀ϵ: 0 < ϵ < 1

Idea of master theorem
𝑇(𝑛) = 𝑎𝑇(𝑛/𝑏) + 𝑓(𝑛)
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Recursion tree:
We know how many levels we are going to have :

after steps the size of the subproblem will be . We are going to stop when𝑘 𝑛/𝑏𝑘

𝑛/𝑏𝑘 = Θ(1)

(height of the tree) = value of at which we are going to stop: ,ℎ 𝑘 𝑛/𝑏𝑘 = 1 ⇒ 𝑛 = 𝑏𝑛

.log
𝑏
𝑛 = ℎ

We are going to stop after steps (very small, computationally it is the best you can do).log
𝑏
𝑛

How many leaves do you have at the end?

Every step you have a number of leaves→ at the end # leaves = 𝑎ℎ = 𝑎
log

𝑏
𝑛

= 𝑛
𝑙𝑜𝑔

𝑏
𝑎

- computations: 𝑎𝑛 = 𝑎
log

𝑏
𝑛

= 𝑎ln𝑛/ln𝑏 = 𝑎(ln𝑎/ln𝑎)·(ln𝑛/ln𝑏) = 𝑎
log

𝑎
𝑛log

𝑏
𝑎

= (𝑎
𝑙𝑜𝑔

𝑎
𝑛
) = 𝑛

𝑙𝑜𝑔
𝑏
𝑎

Three cases:

1. If for some constant , then𝑓(𝑛) = 𝑂(𝑛
log

𝑏
𝑎−ϵ

) ϵ > 0 𝑇(𝑛) = 𝑂(𝑛
log

𝑏
𝑎
)

2. If , then𝑓(𝑛) = Θ(𝑛
log

𝑏
𝑎
) 𝑇(𝑛) = Θ(𝑛

log
𝑏
𝑎

log 𝑛)

3. If for some constant , and if satisfies the smoothness𝑓(𝑛) = Ω(𝑛
log

𝑏
𝑎+ϵ

) ϵ > 0 𝑓
condition for some constant , then𝑎𝑓(𝑛/𝑏) ≤ 𝑐𝑓(𝑛) 𝑐 < 1 𝑇(𝑛) = Θ(𝑓(𝑛))

Divide and conquer (continue):
- Binary search → example of data structure. If data is stored according to some

rules, it can be very easy to search for them.
- Powering a number
- Matrix multiplication

Binary search
Find an element in a sorted array: → array that contains elements that have an ordering
relation

1. divide: check middle element
2. conquer: recursively search 1 subarray → reapply the procedure to half of the

problem
3. combine: trivial

Binary search compares the target value to the middle element of the array: if they are
unequal, the half in which the target cannot lie is eliminated and the search continues on the
remaining half until it is successful or the remaining half is empty.
Although specialized data structures designed for fast searching (such as hash tables) can
be searched more efficiently, binary search applies to a wider range of search problems.
Recurrence for binary search:
𝑇(𝑛) = 1 𝑇(𝑛/2) + Θ(1)

- # of sub problems : 𝑎 = 1
- → subproblem size𝑛/2
- → work dividing and combining → just 1 comparison → computational cost ofΘ(1)

order 1.
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We start with an entire array, and at the next step we reapply the same algorithm to an array
whose size is half of the previous one → recursive procedure → we reapply the algorithm to
sub arrays.
In this case we reapply the algorithm to only one subarray , because the other one is no
longer considered.
Each time we just have to do 1 comparison (operation) → this is because the list was
already sorted.
We can apply the master theorem:
𝑎 = 1, 𝑏 = 2, 𝑓(𝑛) = Θ(1)

Case 2 ( )𝑛
log

𝑏
𝑎

= 𝑛
log

2
1

= 𝑛0 = 1 ⇒ 𝑘 = 0

Solution: 𝑇(𝑛) = Θ(𝑛
log

𝑏
𝑎

· lg
𝑛

𝑘+1) = Θ(lg 𝑛)

Powering a number

Problem: Compute , where𝑎𝑛 𝑛 ∈ 𝑁
Naive algorithm: Θ(𝑛)
Divide and conquer algorithm:

if is even𝑎𝑛 = 𝑎𝑛/2 · 𝑎𝑛/2 𝑛

if is odd𝑎(𝑛−1)/2 · 𝑎(𝑛−1)/2 𝑛
You split the problem in two identical parts, so you just need to compute one of them.
Apply this recursive algorithm → obtain the final result in a logarithmic number of steps
(because you are dividing the size by 2 each time) → same recursion as the insertion sort:

𝑛 → 𝑛/2 →... → 𝑛/2𝑘 = 1 ⇒ 𝑘 = log
2
𝑛

where is the computational cost of𝑇(𝑛) = 𝑇(𝑛/2) + Θ(1) ⇒ 𝑇(𝑛) = Θ(lg 𝑛) Θ(1)
multiplying numbers (1,2 or 3)

Matrix multiplication
For matrices we cannot use the same methods as before.
Input: 𝐴 = [𝑎

𝑖𝑗
],  𝐵 = [𝑏

𝑖𝑗
]

Output: 𝐶 = [𝑐
𝑖𝑗

] = 𝐴𝐵

𝑖, 𝑗 = 1, 2,..., 𝑛

→ these are operations because you have to sum numbers.𝑐
𝑖𝑗

=
𝑘=1

𝑛

∑ 𝑎
𝑖𝑘

· 𝑏
𝑘𝑗

𝑛 𝑛
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Standard algorithm
for i 1 to n←

do for j 1 to n←
do c_ij 0←

for k 1 to n←
do c_ij c_ij + a_ik b_kj← ·

When we multiply two matrices, the computational cost is of the order of , since we have𝑛3

to do operations and we have elements → multiplying two matrices is a costly𝑛 𝑛2

procedure.

Randomized algorithms (algorithms that use randomness - like flipping a coin)
Advantages:

- simplicity
- performance

For many problems a randomized algorithm is the simplest or the fastest; or both.
Definition of randomness
We can think of it as generated by fluctuation.
The only real source of randomness in nature is quantum mechanics, because the
equations that describe it are equations for probability.
In the context of computer science we are talking about pseudo-random number generators
(undistinguishable for not too long sequences).

Randomized algorithms
Algorithms that make random decisions.
That is:

- can generate a random number for some range → if for merge-sort we𝑥 {1 ...  𝑅}
choose as an element to separate arrays a random element → randomized version
of merge-sort called quicksort.

- make decision based on the value of .𝑥
Why would it make sense? If we give an input and random bits to a randomized𝑖 𝑟
algorithm, this will give us an outputi,r

Example: approximating π

𝐴 = π · 𝑟2

𝑇 = (2𝑟)2

→ we could compute by𝐴/𝑇 = π𝑟2/(2𝑟)2 = π/4 π ≃ 4 · 𝐴/𝑇 π
estimating the ratio of the two areas.

If you have a random number generator that generates coordinates , where and are in𝑥 𝑦
between and0 2𝑟:

- 𝑟𝑎𝑛𝑑: (𝑥, 𝑦)
- 𝑥 ∈ [0, 2𝑟]
- 𝑦 ∈ [0, 2𝑟]

You see if the coordinate generated is:
- inside the circle → you call the point red
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- outside the circle → you call it blue
The random numbers are distributed uniformly → the area of the circle is proportional to the
number of points inside, because the probability distribution of these points is uniform over
the square → if you count how many points fall inside the circle This will be proportional To
the area.
Similarly, the area of the square will be proportional to the number of blue + the number of
red points.
You can estimate as the number of red points divided by the number of red + blue𝐴/𝑇
points-
If you do this for very large you get an approximation of .𝑛 π

Example of Randomized Algorithm: Monte Carlo e Las Vegas
There are two classes of randomized algorithms:

1. a Monte Carlo algorithm runs for a fixed number of steps and produces one answer
that is correct with a certain probability.

2. a Las Vegas algorithm always produces the correct answer; its running time is a
random variable whose expectation is bounded (say by a polynomial).

Notice: the probabilities are defined by the random numbers of the algorithm, not by
random choices of the problem instance.

Two basics examples
1. Matrix product checker: is ?𝐴𝐵 = 𝐶
2. Quicksort: example of divide and conquer → fast and practical sorting algorithm.

Another example of randomized algorithm : a randomized version of merge-sort, which has
some advantages compared to standard merge-sort: choosing the element for splicing at
random makes it impossible for an adversary to produce a list which produces the worst
case scenario for the algorithm → there is no way to initialize the problem in a way that the
algorithm is going to fail badly.

Matrix product checker
Given: matrices𝑛 × 𝑛 𝐴, 𝐵, 𝐶
Goal: is ? → we want to check this with a randomized algorithm.𝐴 × 𝐵 = 𝐶
We will see an algorithm that:𝑂(𝑛2)

- if answer = YES, then Pr[output = YES]=1
- if answer = NO, then Pr[output=YES] ½ → when you have a scalar product≤

(multiply something by a vector) on both sides you have a sum. The two sums might
be equal even though the single elements are different.

How long would it take by a trivial algorithm to do this?

- you compute → operations𝐴 · 𝐵 𝑛3

- you compute each matrix element with the target matrix → check elements𝑛2

- computational cost 𝑇 ∼ Θ(𝑛3) + Θ(𝑛2) =  Θ(𝑛3)
The algorithm

- Choose a binary vector such that →𝑥[1 ...  𝑛] 𝑃𝑟[𝑥
𝑖

= 1] = 1/2,  𝑖 = 1,..., 𝑛
𝑥 = [0, 0, 1, 0, 1,..., 1, 0, 1, 0, 0]

- Check if 𝐴𝐵𝑥 = 𝐶𝑥
Does it run in time? Yes, because → you first compute , which is a𝑂(𝑛2) 𝐴𝐵𝑥 = 𝐴(𝐵𝑥) 𝐵𝑥
matrix times a vector: it requires operations and you obtain a vector. You then𝑂(𝑛2)
multiply again by a matrix ( operations) → overall: .𝑛2 𝑂(𝑛2) + 𝑂(𝑛2) = 𝑂(𝑛2)
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Correctness
Let , need to check if .𝐷 = 𝐴𝐵 𝐷 = 𝐶
If , then , so the output is YES (for any )→ each product requires𝐷 = 𝐶 𝐷𝑥 = 𝐶𝑥 𝑥 𝑛
operations, and at the end you have elements you have to compute . You repeat it twice:𝑛
overall .𝑂(𝑛2)
If , presumably there exists such that :𝐷 ≠ 𝐶 𝑥 𝐷𝑥 ≠ 𝐶𝑥

- if , then check always returns “Yes”𝐴𝐵 = 𝐶 𝐷𝑥 = 𝐶𝑥
- if , then check returns “Yes” with a probability that is less than or𝐴𝐵 ≠ 𝐶 𝐷𝑥 = 𝐶𝑥

equal to one half.
We cannot imply that because even if the matrices have different elements, the𝐷𝑥 ≠ 𝐶𝑥
sum of all the elements can be the same.

We want to be able to generate a lot of vectors at random that are statistically𝑥‾
independent in such a way that for each test that we do, the probability of error gets
multiplied [P(err) P(err)]·

Proof
Generic vectors

- consider vectors (rows of the matrices) (say, ) → they need to differ at𝑑 ≠ 𝑐 𝑑
𝑖

≠ 𝑐
𝑖

least in one index.
- Choose a random binary 𝑥
- We have if and only if𝑑𝑥 = 𝑐𝑥 (𝑑 − 𝑐)𝑥 = 0
- 𝑃𝑟(𝑑 − 𝑐)𝑥 = 0]?

If , then𝑥
𝑖

= 0 (𝑐 − 𝑑)𝑥 = 𝑠
1

If , then𝑥
𝑖

= 1 (𝑐 − 𝑑)𝑥 = 𝑠
2

≠ 𝑠
1

So, of the choices gives → , i.e. given that the two≥ 1 (𝑐 − 𝑑)𝑥 ≠ 0 𝑃𝑟[𝑐𝑥 = 𝑑𝑥] ≤ 1/2
vectors are not equal , there exists at least one choice of the index such that𝑖 (𝑐 − 𝑑)𝑥 ≠ 0
to with probability .1/2
The probability that a “Yes” check on the random vector , corresponds in fact to an overall𝑥
“No” for the matrix product equality is less or equal to .1/2
If we want to reduce the probability from to we run the algorithm twice, using1/2 1/4
independent random generators.

Is ?𝐴 × 𝐵 = 𝐶
- If answer = YES, then Pr[output=YES]=1
- If answer = NO, then Pr[output=YES]≤ 1/2

To reduce to :1/2 1/4
- run the algorithm twice, using independent random numbers.
- output YES only if both runs say YES

Analysis:
- If answer = YES, then Pr[output1=YES,output2=YES]=1
- If answer = NO, then Pr[output1=YES]=Pr[output1=YES,output2=YES]=

Pr[output1=YES]*Pr[output2=YES]≤ 1/4
K runs, i.e. operations, lead to an error probability which is .𝑂(𝑘𝑛2) ≤ 1/2𝑘

𝑂(𝑘𝑛2) → 𝑃𝑟(𝑒𝑟𝑟) ≤ 1/2𝑘

The number of repetition is going to depend on the error but not on the size, so the total

cost is going to be , so it depends both on the error that you are ready to tolerate and𝑘 · 𝑛2

on the size of the matrix.
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MIN-CUT for UNDIRECTED GRAPH
Find a minimum cut in a graph.
Given an undirected graph, a global MIN-CUT is a cut (𝑠, 𝑣 − 𝑠)
minimizing the number of crossing edges, where a crossing edge is
an edge s.t. and .(𝑢, 𝑣) 𝑢 ∈ 𝑆 𝑣 ∈ 𝑉 − 𝑆
You divide the vertices in 2 sets, The cut is the number of edges that
connect the two sets.
You want to find a partition of the graph in 2 parts such that the
number of the edges connecting the two sets is minimized.

Graph contraction (contraction of an edge)
For an undirected graph , we can construct a new graph by𝐺 𝐺'
contracting (contract only vertices that are connected) two vertices 𝑢, 𝑣
in as follows:𝐺

- and become one vertex and the edge is removed𝑢 𝑣 {𝑢, 𝑣} (𝑢, 𝑣)
→ you fuse two vertices together.

- the other edges incident to or in are now incident on the𝑢 𝑣 𝐺
new vertex (new vertex with double label) in .{𝑢, 𝑣} 𝐺'

Note: there may be multi-edges between two vertices. We just keep them.

Karger’s min-cut algorithm

1) Graph G
2) Contract nodes and𝐶 𝐷
3) contract nodes and𝐴 𝐶𝐷
4) cut 𝐶 = {(𝐴, 𝐵), (𝐵, 𝐶), (𝐵, 𝐷)}

Note: is a cut but not necessarily a min-cut.𝐶
When we contract, we pick at random one edge and we contract the two vertices
connected by this edge. All the edges that connect these two nodes disappear.
Example

We assign to each edge the same probability of
being chosen → we are uniformly choosing one
edge at random whose vertices are going to be
contracted → if you have two nodes that have a
double edge they have a higher chance of being
merged (twice the probability).

By contracting you find a cut
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Karger’s MIN-CUT
INPUT: A graph G=(V,E)
OUTPUT: A cut C E⊆
BEGIN

REPEAT
choose a random edge e;
contract e and merge its endpoints into a single vertex;

UNTIL there are only two vertices a,b left;
Let C be the set of edges between a and b;
RETURN C;

END

By following this procedure, we are going to end up with a cut.

The probability that what you find is a minimum cut is (really high probability).1/𝑛2

If you run the same procedure an order of times, you have a probability of order 1 of𝑛2

finding a minimum cut.

Another example
After three contractions, a particular minimum cut 𝐶

𝑚𝑖𝑛
consisting of the two dashed edges survives.
Note that, in the second step, there are two edges
connecting the upper two vertices, so the probability that
they will be merged is .2/5

We repeat this process until only two vertices are left. At that point, let be the set of𝐶
surviving edges connecting these two vertices. is a cut, since it separates a into the two𝐶
pieces that contracted to form and respectively .𝑎 𝑏
What is surprising is that, with reasonably high probability, is as small as possible.𝐶

To see this , let be the minimum cut, or one of the minimum cuts if it is not unique, and𝐶
𝑚𝑖𝑛

suppose that has size (optimal minimum size of the cut). Then if and only if𝐶
𝑚𝑖𝑛

𝑘 𝐶 = 𝐶
𝑚𝑖𝑛

these edges survive to the end of the algorithm without being contracted.𝑘

Now consider the step of the algorithm when there are vertices left.𝑡
Each vertex must have at least edges, since otherwise cutting its edges would give a cut𝑘
of size less than (minimum possible size → not possible).𝑘
Thus there are at least (divide by 2 to avoid overcounting) edges left, and the𝑡 𝑘/2
probability that none of the edges in are chosen for contraction on that step is:𝑘 𝐶

𝑚𝑖𝑛
1 − 𝑘/(# 𝑒𝑑𝑔𝑒𝑠) ≥ 1 − 𝑘/(𝑡𝑘/2) = (𝑡 − 2)/𝑡
This is the probability of not choosing one of the edges that belong to the minimum cut.

- → probability that they are chosen𝑘/(#𝑒𝑑𝑔𝑒𝑠)
- 𝑘/(𝑡𝑘/2) < #𝑒𝑑𝑔𝑒𝑠

If has vertices to start with, the probability that survives until the end is the product𝐺 𝑛 𝐶
𝑚𝑖𝑛

of this probability over all steps . This gives the lower bound.𝑛 − 2

𝑝 ≥
𝑡=3

𝑛

∏ 𝑡−2
𝑡 = 1·2·3...(𝑛−2)

3·4·5... 𝑛 = 2
𝑛(𝑛−1) = 𝑂( 1

𝑛2 )

Probability from to (when you have two vertices left you stop). For each step, you𝑡 = 3 𝑛
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take the probability of not selecting one of the golden edges. The probability of doing the
whole process without touching the minimum cut is given by the product of the
intermediate probabilities.

Thus, the probability of success is → lower boundΩ(1/𝑛2)

Note that if the minimum we are not unique , this lower band applies to the probability that
any particular one survives.

Succeeding with probability may not seem like a great achievement.Ω(1/𝑛2)
However, we can increase the probability of success by trying the algorithm multiple times.

Since each attempt is independent, if we make attempts, then the probability1
𝑝 = 𝑂(𝑛2)

that none of them finds :𝐶
𝑚𝑖𝑛

 𝑖𝑠

(1 − 𝑝)1/𝑝 ≤ 1
𝑒

- p: probability of succeeding in 1 run
- 1-p: probability of not succeeding

- probability that at least one run finds the optimal solution: 1 − (1 − 𝑝)1/𝑝

Where we used the inequality .1 − 𝑥 ≤ 𝑒−𝑥

Therefore, the probability that at least one of these attempts succeeds is at least1
𝑝

(by choosing a number of repetition that is proportional to 1/p you get a1 − 1
𝑒 ≈ 0. 63

probability of success of 63%).
This gives an algorithm that succeeds with constant probability, i.e., with probability .Ω(1)
If we want an algorithm that succeeds with high probability, i.e. with probability ,1 − 𝑜(1)
we can male a somewhat larger number of attempts.

- for goes to 0.  The probability of success is arbitrarily close to 1.1 − 𝑜(1) 𝑛 → ∞
If we try the algorithm

( 1
𝑝 ) ln 𝑛 = 𝑂(𝑛2 log 𝑛)

times, say, then the probability that every attempt fails is:

( 1
𝑝 )(1/𝑝)ln(𝑛) ≤ 𝑒−ln(𝑛) = 1

𝑛 = 𝑜(1)
Thus, we can raise the probability of success from to with just aΩ(1) 1 − 𝑜(1) log 𝑛
increase in the running time (you get arbitrarily close to 1).
Moreover, the total running time of this algorithm is competitive with the best known
deterministic algorithms.

This “boosting” technique is a simple but important theme in randomized algorithms.
If each attempt succeeds with probability , the average number of attempts before we𝑝
succeed is , and we can succeed with high probability by making slightly more than1

𝑝
1
𝑝

attempts.
If each attempt takes polynomial time and , then the total running time is𝑝 = 1/𝑝𝑜𝑙𝑦(𝑛)
𝑝𝑜𝑙𝑦(𝑛).
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